Identifying Pauli blockade regimes in bilayer graphene double quantum dots

被引:1
作者
Mukherjee, Ankan [1 ]
Muralidharan, Bhaskaran [2 ,3 ]
机构
[1] Indian Inst Technol, Dept Phys, Mumbai 400076, India
[2] Indian Inst Technol, Dept Elect Engn, Mumbai 400076, India
[3] Indian Inst Technol, Ctr Excellence Quantum Informat Computat Sci & Tec, Mumbai 400076, India
关键词
bilayer graphene quantum dots; 2D-qubits; quantum transport; HUBBARD-MODEL; 2D MATERIALS; SPIN; QUBIT;
D O I
10.1088/2053-1583/accaf8
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Recent experimental observations of current blockades in 2D material quantum-dot platforms have opened new avenues for spin and valley-qubit processing. Motivated by experimental results, we construct a model capturing the delicate interplay of Coulomb interactions, inter-dot tunneling, Zeeman splittings, and intrinsic spin-orbit coupling in a double quantum dot (DQD) structure to simulate the Pauli blockades. Analyzing the relevant Fock-subspaces of the generalized Hamiltonian, coupled with the density matrix master equation technique for transport across the setup, we identify the generic class of blockade mechanisms. Most importantly, and contrary to what is widely recognized, we show that conducting and blocking states responsible for the Pauli-blockades are a result of the coupled effect of all degrees of freedom and cannot be explained using the spin or the valley pseudo-spin only. We then numerically predict the regimes where Pauli blockades might occur, and, to this end, we verify our model against actual experimental data and propose that our model can be used to generate data sets for different values of parameters with the ultimate goal of training on a machine learning algorithm. Our work provides an enabling platform for a predictable theory-aided experimental realization of single-shot readout of the spin and valley states on DQDs based on 2D-material platforms.
引用
收藏
页数:13
相关论文
共 75 条
[31]  
Konschuh S, 2012, PHYS REV B, V85, DOI 10.1103/PhysRevB.85.115423
[32]   Spin-Orbit Coupling, Quantum Dots, and Qubits in Monolayer Transition Metal Dichalcogenides [J].
Kormanyos, Andor ;
Zolyomi, Viktor ;
Drummond, Neil D. ;
Burkard, Guido .
PHYSICAL REVIEW X, 2014, 4 (01)
[33]   Coupling of spin and orbital motion of electrons in carbon nanotubes [J].
Kuemmeth, F. ;
Ilani, S. ;
Ralph, D. C. ;
McEuen, P. L. .
NATURE, 2008, 452 (7186) :448-452
[34]   Pauli Spin Blockade in a Highly Tunable Silicon Double Quantum Dot [J].
Lai, N. S. ;
Lim, W. H. ;
Yang, C. H. ;
Zwanenburg, F. A. ;
Coish, W. A. ;
Qassemi, F. ;
Morello, A. ;
Dzurak, A. S. .
SCIENTIFIC REPORTS, 2011, 1
[35]   Gate-Defined Quantum Confinement in CVD 2D WS2 [J].
Lau, Chit Siong ;
Chee, Jing Yee ;
Cao, Liemao ;
Ooi, Zi-En ;
Tong, Shi Wun ;
Bosman, Michel ;
Bussolotti, Fabio ;
Deng, Tianqi ;
Wu, Gang ;
Yang, Shuo-Wang ;
Wang, Tong ;
Teo, Siew Lang ;
Wong, Calvin Pei Yu ;
Chai, Jian Wei ;
Chen, Li ;
Zhang, Zhong Ming ;
Ang, Kah-Wee ;
Ang, Yee Sin ;
Goh, Kuan Eng Johnson .
ADVANCED MATERIALS, 2022, 34 (25)
[36]   High-quality two-dimensional electron gas in undoped InSb quantum wells [J].
Lei, Zijin ;
Cheah, Erik ;
Rubi, Km ;
Bal, Maurice E. ;
Adam, Christoph ;
Schott, Rudiger ;
Zeitler, Uli ;
Wegscheider, Werner ;
Ihn, Thomas ;
Ensslin, Klaus .
PHYSICAL REVIEW RESEARCH, 2022, 4 (01)
[37]   2D materials for future heterogeneous electronics [J].
Lemme, Max C. ;
Akinwande, Deji ;
Huyghebaert, Cedric ;
Stampfer, Christoph .
NATURE COMMUNICATIONS, 2022, 13 (01)
[38]  
Levine Y., 2017, arXiv
[39]   The one-dimensional Hubbard model: a reminiscence [J].
Lieb, EH ;
Wu, FY .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2003, 321 (1-2) :1-27
[40]   2D materials for quantum information science [J].
Liu, Xiaolong ;
Hersam, Mark C. .
NATURE REVIEWS MATERIALS, 2019, 4 (10) :669-684