Accuracy of Nodule Volume and Airway Wall Thickness Measurement Using Low-Dose Chest CT on a Photon-Counting Detector CT Scanner

被引:19
作者
Dunning, Chelsea A. S. [1 ]
Marsh, Jeffrey F., Jr. [1 ]
Winfree, Timothy [1 ]
Rajendran, Kishore [1 ]
Leng, Shuai [1 ]
Levin, David L. [1 ]
Johnson, Tucker F. [1 ]
Fletcher, Joel G. [1 ]
McCollough, Cynthia H. [1 ]
Yu, Lifeng [1 ]
机构
[1] Mayo Clin, Dept Radiol, Rochester, MN USA
关键词
computed tomography; x-ray; lung cancer; pulmonary nodules; dose reduction; chronic obstructive pulmonary disease; OBSTRUCTIVE PULMONARY-DISEASE; NOISE-REDUCTION METHOD; IMAGE; IMPACT;
D O I
10.1097/RLI.0000000000000933
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
ObjectivesA comparison of high-resolution photon-counting detector computed tomography (PCD-CT) versus energy-integrating detector (EID) CT via a phantom study using low-dose chest CT to evaluate nodule volume and airway wall thickness quantification.Materials and MethodsTwelve solid and ground-glass lung nodule phantoms with 3 diameters (5 mm, 8 mm, and 10 mm) and 2 shapes (spherical and star-shaped) and 12 airway tube phantoms (wall thicknesses, 0.27-1.54 mm) were placed in an anthropomorphic chest phantom. The phantom was scanned with EID-CT and PCD-CT at 5 dose levels (CTDIvol = 0.1-0.8 mGy at Sn-100 kV, 7.35 mGy at 120 kV). All images were iteratively reconstructed using matched kernels for EID-CT and medium-sharp kernel (MK) PCD-CT and an ultra-sharp kernel (USK) PCD-CT kernel, and image noise at each dose level was quantified. Nodule volumes were measured using semiautomated segmentation software, and the accuracy was expressed as the percentage error between segmented and reference volumes. Airway wall thicknesses were measured, and the root-mean-square error across all tubes was evaluated.ResultsMK PCD-CT images had the lowest noise. At 0.1 mGy, the mean volume accuracy for the solid and ground-glass nodules was improved in USK PCD-CT (3.1% and 3.3% error) compared with MK PCD-CT (9.9% and 10.2% error) and EID-CT images (11.4% and 9.2% error), respectively. At 0.2 mGy and 0.8 mGy, the wall thickness root-mean-square error values were 0.42 mm and 0.41 mm for EID-CT, 0.54 mm and 0.49 mm for MK PCD-CT, and 0.23 mm and 0.16 mm for USK PCD-CT.ConclusionsUSK PCD-CT provided more accurate lung nodule volume and airway wall thickness quantification at lower radiation dose compared with MK PCD-CT and EID-CT.
引用
收藏
页码:283 / 292
页数:10
相关论文
共 39 条
[1]   High-Resolution Chest Computed Tomography Imaging of the Lungs Impact of 1024 Matrix Reconstruction and Photon-Counting Detector Computed Tomography [J].
Bartlett, David J. ;
Koo, Chi Wan ;
Bartholmai, Brian J. ;
Rajendran, Kishore ;
Weaver, Jayse M. ;
Halaweish, Ahmed E. ;
Leng, Shuai ;
McCollough, Cynthia H. ;
Fletcher, Joel G. .
INVESTIGATIVE RADIOLOGY, 2019, 54 (03) :129-137
[2]   Electronic Noise in CT Detectors: Impact on Image Noise and Artifacts [J].
Duan, Xinhui ;
Wang, Jia ;
Leng, Shuai ;
Schmidt, Bernhard ;
Allmendinger, Thomas ;
Grant, Katharine ;
Flohr, Thomas ;
McCollough, Cynthia H. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2013, 201 (04) :W626-W632
[3]   3D Slicer as an image computing platform for the Quantitative Imaging Network [J].
Fedorov, Andriy ;
Beichel, Reinhard ;
Kalpathy-Cramer, Jayashree ;
Finet, Julien ;
Fillion-Robin, Jean-Christophe ;
Pujol, Sonia ;
Bauer, Christian ;
Jennings, Dominique ;
Fennessy, Fiona ;
Sonka, Milan ;
Buatti, John ;
Aylward, Stephen ;
Miller, James V. ;
Pieper, Steve ;
Kikinis, Ron .
MAGNETIC RESONANCE IMAGING, 2012, 30 (09) :1323-1341
[4]   Computed tomography with a full FOV photon-counting detector in a clinical setting, the first experience [J].
Ferda, Jiri ;
Vendis, Tomas ;
Flohr, Thomas ;
Schmidt, Bernhard ;
Henning, Andre ;
Ulzheimer, Stefan ;
Pecen, Ladislav ;
Ferdova, Eva ;
Baxa, Jan ;
Mirka, Hynek .
EUROPEAN JOURNAL OF RADIOLOGY, 2021, 137
[5]   The Emerging Role of Quantification of Imaging for Assessing the Severity and Disease Activity of Emphysema, Airway Disease, and Interstitial Lung Disease [J].
Goldin, Jonathan Gerald .
RESPIRATION, 2021, 100 (04) :277-290
[6]   Quantitative Computed Tomography Measures of Emphysema and Airway Wall Thickness Are Related to Respiratory Symptoms [J].
Grydeland, Thomas B. ;
Dirksen, Asger ;
Coxson, Harvey O. ;
Eagan, Tomas M. L. ;
Thorsen, Einar ;
Pillai, Sreekumar G. ;
Sharma, Sanjay ;
Eide, Geir Egil ;
Gulsvik, Amund ;
Bakke, Per S. .
AMERICAN JOURNAL OF RESPIRATORY AND CRITICAL CARE MEDICINE, 2010, 181 (04) :353-359
[7]   Chronic Obstructive Pulmonary Disease Exacerbations in the COPDGene Study: Associated Radiologic Phenotypes [J].
Han, MeiLan K. ;
Kazerooni, Ella A. ;
Lynch, David A. ;
Liu, Lyrica X. ;
Murray, Susan ;
Curtis, Jeffrey L. ;
Criner, Gerard J. ;
Kim, Victor ;
Bowler, Russell P. ;
Hanania, Nicola A. ;
Anzueto, Antonio R. ;
Make, Barry J. ;
Hokanson, John E. ;
Crapo, James D. ;
Silverman, Edwin K. ;
Martinez, Fernando J. ;
Washko, George R. .
RADIOLOGY, 2011, 261 (01) :274-282
[8]   Unenhanced third-generation dual-source chest CT using a tin filter for spectral shaping at 100 kVp [J].
Haubenreisser, Holger ;
Meyer, Mathias ;
Sudarski, Sonja ;
Allmendinger, Thomas ;
Schoenberg, Stefan O. ;
Henzler, Thomas .
EUROPEAN JOURNAL OF RADIOLOGY, 2015, 84 (08) :1608-1613
[9]   Evaluating a Convolutional Neural Network Noise Reduction Method When Applied to CT Images Reconstructed Differently Than Training Data [J].
Huber, Nathan R. ;
Missert, Andrew D. ;
Yu, Lifeng ;
Leng, Shuai ;
McCollough, Cynthia H. .
JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2021, 45 (04) :544-551
[10]   Deep Learning Reconstruction Shows Better Lung Nodule Detection for Ultra-Low-Dose Chest CT [J].
Jiang, Beibei ;
Li, Nianyun ;
Shi, Xiaomeng ;
Zhang, Shuai ;
Li, Jianying ;
de Bock, Geertruida H. ;
Vliegenthart, Rozemarijn ;
Xie, Xueqian .
RADIOLOGY, 2022, 303 (01) :202-212