Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins

被引:2
|
作者
Soumri, N. [1 ]
Carabano, Maria J. [2 ]
Gonzalez-Recio, O. [2 ]
Bedhiaf-Romdhani, S. [1 ]
机构
[1] Natl Inst Agron Res Tunisia INRAT, Anim & Fodder Prod Lab, Tunis 1004, Tunisia
[2] Natl Inst Agr & Food Res & Technol INIA, Anim Breeding & Genet Dept, Madrid 28040, Spain
关键词
genetic parameters; Holstein; model comparison; persistency; random regression; SOMATIC-CELL SCORE; TEST-DAY RECORDS; LEGENDRE POLYNOMIALS; BREEDING VALUES; DAIRY-CATTLE; 1ST; COWS; SELECTION; TRAITS; PERSISTENCY;
D O I
10.1111/jbg.12770
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values.
引用
收藏
页码:440 / 461
页数:22
相关论文
共 50 条
  • [41] A Comparison of Some Random Regression Models for First Lactation Test Day Milk Yields in Jersey Cows and Estimating of Genetic Parameters
    Cankaya, Soner
    Takma, Cigdem
    Abaci, Samet Hasan
    Ulker, Mehmet
    KAFKAS UNIVERSITESI VETERINER FAKULTESI DERGISI, 2014, 20 (01) : 5 - 10
  • [42] Genetic parameters for milk production and persistency in the Iranian Holstein population by the multitrait random regression model
    Kheirabadi, Khabat
    Alijani, Sadegh
    ARCHIV FUR TIERZUCHT-ARCHIVES OF ANIMAL BREEDING, 2014, 57
  • [43] Variance components and genetic parameters for milk production of Holstein cattle in Antioquia (Colombia) using random regression models
    Herrera, Ana C.
    Munera, Oscar D.
    Ceron-Munoz, Mario F.
    REVISTA COLOMBIANA DE CIENCIAS PECUARIAS, 2013, 26 (02) : 90 - 97
  • [44] Genetic Analysis of Milk Yield in First-Lactation Holstein Friesian in Ethiopia: A Lactation Average vs Random Regression Test-Day Model Analysis
    Meseret, S.
    Tamir, B.
    Gebreyohannes, G.
    Lidauer, M.
    Negussie, E.
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2015, 28 (09): : 1226 - 1234
  • [45] Estimates of genetic parameters for stayability to consecutive calvings of Canadian Simmentals by random regression models
    Jamrozik, J.
    McGrath, S.
    Kemp, R. A.
    Miller, S. P.
    JOURNAL OF ANIMAL SCIENCE, 2013, 91 (08) : 3634 - 3643
  • [46] Estimation of genetic parameters and trends for energy-corrected 305-d milk yield in Iranian Holsteins
    Hossein-Zadeh, Navid Ghavi
    ARCHIV FUR TIERZUCHT-ARCHIVES OF ANIMAL BREEDING, 2012, 55 (05): : 420 - 426
  • [47] Predicting breeding values for milk yield of Guzera (Bos indicus) cows using random regression models
    Santos, D. J. A.
    Peixoto, M. G. C. D.
    Aspilcueta Borquis, R. R.
    Panetto, J. C. C.
    El Faro, L.
    Tonhati, H.
    LIVESTOCK SCIENCE, 2014, 167 : 41 - 50
  • [48] Random Regression Models Using Legendre Polynomials to Estimate Genetic Parameters for Test-day Milk Protein Yields in Iranian Holstein Dairy Cattle
    Naserkheil, Masoumeh
    Miraie-Ashtiani, Seyed Reza
    Nejati-Javaremi, Ardeshir
    Son, Jihyun
    Lee, Deukhwan
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2016, 29 (12): : 1682 - 1687
  • [49] Random regression test-day parameters for first lactation milk yield in selection and production environments in Kenya
    Muasya, T. K.
    Peters, K. J.
    Magothe, T. M.
    Kahi, A. K.
    LIVESTOCK SCIENCE, 2014, 169 : 27 - 34
  • [50] Genetic analysis of fat-to-protein ratio, milk yield and somatic cell score of Holstein cows in Japan in the first three lactations by using a random regression model
    Nishiura, Akiko
    Sasaki, Osamu
    Aihara, Mitsuo
    Takeda, Hisato
    Satoh, Masahiro
    ANIMAL SCIENCE JOURNAL, 2015, 86 (12) : 961 - 969