Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins

被引:2
|
作者
Soumri, N. [1 ]
Carabano, Maria J. [2 ]
Gonzalez-Recio, O. [2 ]
Bedhiaf-Romdhani, S. [1 ]
机构
[1] Natl Inst Agron Res Tunisia INRAT, Anim & Fodder Prod Lab, Tunis 1004, Tunisia
[2] Natl Inst Agr & Food Res & Technol INIA, Anim Breeding & Genet Dept, Madrid 28040, Spain
关键词
genetic parameters; Holstein; model comparison; persistency; random regression; SOMATIC-CELL SCORE; TEST-DAY RECORDS; LEGENDRE POLYNOMIALS; BREEDING VALUES; DAIRY-CATTLE; 1ST; COWS; SELECTION; TRAITS; PERSISTENCY;
D O I
10.1111/jbg.12770
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values.
引用
收藏
页码:440 / 461
页数:22
相关论文
共 50 条
  • [21] Estimates of genetic parameters for milk yield and persistency of lactation of Gyr cows, applying random regression models
    Gonzalez Herrera, Luis Gabriel
    El Faro, Lenira
    de Albuquerque, Lucia Galvao
    Tonhati, Humberto
    Cavallari Machado, Carlos Henrique
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2008, 37 (09): : 1584 - 1594
  • [22] GENETIC-PARAMETERS FOR SOMATIC-CELLS, PROTEIN, AND FAT IN MILK OF HOLSTEINS
    SCHUTZ, MM
    HANSEN, LB
    STEUERNAGEL, GR
    RENEAU, JK
    KUCK, AL
    JOURNAL OF DAIRY SCIENCE, 1990, 73 (02) : 494 - 502
  • [23] Estimation of genetic parameters for test-day milk yield in Girolando cows using a random regression model
    Santos, E. P. B.
    Feltes, G. L.
    Negri, R.
    Cobuci, J. A.
    Silva, M. V. G. B.
    ARQUIVO BRASILEIRO DE MEDICINA VETERINARIA E ZOOTECNIA, 2021, 73 (01) : 18 - 24
  • [24] Persistence in milk, fat and protein production of primiparous Holstein cows by random regression models
    Biassus, Igor de Oliveira
    Cobuci, Jaime Araujo
    Costa, Claudio Napolis
    Nogara Rorato, Paulo Roberto
    Neto, Jose Braccini
    Cardoso, Leandro Lunardini
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2010, 39 (12): : 2617 - 2624
  • [25] BAYESIAN INFERENCE OF GENETIC PARAMETERS FOR 305 DAY MILK YIELD IN TURKISH HOLSTEINS VIA GIBBS SAMPLING
    Gevrekci, Yakut
    Mestav, Burcu
    Takma, Cigdem
    FRESENIUS ENVIRONMENTAL BULLETIN, 2018, 27 (09): : 6388 - 6393
  • [26] Estimation of genetic parameters for test day milk yield of first lactation Jersey cows using repeatability and random regression models
    Laurino Dionello, Nelson Jose
    Soares da Silva, Carlos Alberto
    Costa, Claudio Napolis
    Cobuci, Jaime Araujo
    REVISTA BRASILEIRA DE ZOOTECNIA-BRAZILIAN JOURNAL OF ANIMAL SCIENCE, 2006, 35 (04): : 1646 - 1652
  • [27] Genetic associations between milk fat-to-protein ratio, milk production and fertility in the first two lactations of Thai Holsteins dairy cattle
    Puangdee, Somsook
    Duangjinda, Monchai
    Boonkum, Wuttigrai
    Katawatin, Suporn
    Buaban, Sayan
    Thepparat, Mongkol
    ANIMAL SCIENCE JOURNAL, 2017, 88 (05) : 723 - 730
  • [28] Random regression models for milk, fat and protein in Colombian Buffaloes
    Hurtado-Lugo, Naudin
    Tonhati, Humberto
    Aspilcuelta-Borquis, Raul
    Enriquez-Valencia, Cruz
    Ceron-Munoz, Mario
    REVISTA MVZ CORDOBA, 2015, 20 (01) : 4415 - 4426
  • [29] Genetic analysis of milk yield, fat and protein content in Holstein dairy cows in Iran: Legendre polynomials random regression model applied
    Abdullahpour, Rohullah
    Shahrbabak, Mohammad Moradi
    Nejati-Javaremi, Ardeshir
    Torshizi, Rasoul Vaez
    Mrode, Raphael
    ARCHIV FUR TIERZUCHT-ARCHIVES OF ANIMAL BREEDING, 2013, 56
  • [30] Combining different functions to describe milk, fat, and protein yield in goats using Bayesian multiple-trait random regression models
    Oliveira, H. R.
    Silva, F. F.
    Siqueira, O. H. G. B. D.
    Souza, N. O.
    Junqueira, V. S.
    Resende, M. D. V.
    Borquis, R. R. A.
    Rodrigues, M. T.
    JOURNAL OF ANIMAL SCIENCE, 2016, 94 (05) : 1865 - 1874