Random regression models to estimate genetic parameters for milk yield, fat, and protein contents in Tunisian Holsteins

被引:2
|
作者
Soumri, N. [1 ]
Carabano, Maria J. [2 ]
Gonzalez-Recio, O. [2 ]
Bedhiaf-Romdhani, S. [1 ]
机构
[1] Natl Inst Agron Res Tunisia INRAT, Anim & Fodder Prod Lab, Tunis 1004, Tunisia
[2] Natl Inst Agr & Food Res & Technol INIA, Anim Breeding & Genet Dept, Madrid 28040, Spain
关键词
genetic parameters; Holstein; model comparison; persistency; random regression; SOMATIC-CELL SCORE; TEST-DAY RECORDS; LEGENDRE POLYNOMIALS; BREEDING VALUES; DAIRY-CATTLE; 1ST; COWS; SELECTION; TRAITS; PERSISTENCY;
D O I
10.1111/jbg.12770
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
This study aimed to find the parsimonious random regression model (RRM) to evaluate the genetic potential for milk yield (MY), fat content (FC), and protein content (PC) in Tunisian Holstein cows. For this purpose, 551,139; 331,654; and 302,396 test day records for MY, FC, and PC were analysed using various RRMs with different Legendre polynomials (LP) orders on additive genetic (AG) and permanent environmental (PE) effects, and different types of residual variances (RV). The statistical analysis was performed in a Bayesian framework with Gibbs sampling, and the model performances were assessed, mainly, on the predictive ability criteria. The study found that the optimal model for evaluating these traits was an RRM with a third LP order and nine classes of heterogeneous RV. In addition, the study found that heritability estimates for MY, FC, and PC ranged from 0.11 to 0.22, 0.11 to 0.17, and 0.12 to 0.18, respectively, indicating that genetic improvement should be accompanied by improvements in the production environment. The study also suggested that new selection rules could be used to modify lactation curves by exploiting the canonical transformation of the random coefficient covariance (RC) matrix or by using the combination of slopes of individual lactation curves and expected daily breeding values.
引用
收藏
页码:440 / 461
页数:22
相关论文
共 50 条
  • [1] Random regression models to estimate test-day milk yield genetic parameters Holstein cows in Southeastern Brazil
    Bignardi, Annaiza Braga
    El Faro, Lenira
    Cardoso, Vera Lucia
    Machado, Paulo Fernando
    de Albuquerque, Lucia Galvao
    LIVESTOCK SCIENCE, 2009, 123 (01) : 1 - 7
  • [2] Genetic parameters for test-day yield of milk, fat and protein in buffaloes estimated by random regression models
    Aspilcueta-Borquis, Rusbel R.
    Araujo Neto, Francisco R.
    Baldi, Fernando
    Santos, Daniel J. A.
    Albuquerque, Lucia G.
    Tonhati, Humberto
    JOURNAL OF DAIRY RESEARCH, 2012, 79 (03) : 272 - 279
  • [3] Random regression models to estimate genetic parameters for test-day milk yield in Brazilian Murrah buffaloes
    Sesana, R. C.
    Bignardi, A. B.
    Borquis, R. R. A.
    El Faro, L.
    Baldi, F.
    Albuquerque, L. G.
    Tonhati, H.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2010, 127 (05) : 369 - 376
  • [4] Genetic parameters for milk production and persistency for Danish Holsteins estimated in random regression models using REML
    Jakobsen, JH
    Madsen, P
    Jensen, J
    Pedersen, J
    Christensen, LG
    Sorensen, DA
    JOURNAL OF DAIRY SCIENCE, 2002, 85 (06) : 1607 - 1616
  • [5] Genetic analysis of milk production traits of Tunisian Holsteins using random regression test-day model with Legendre polynomials
    Ben Zaabza, Hafedh
    Ben Gara, Abderrahmen
    Rekik, Boulbaba
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2018, 31 (05): : 636 - 642
  • [6] Random regression test day models to estimate genetic parameters for milk yield and milk components in Philippine dairy buffaloes
    Flores, E. B.
    van der Werf, J.
    JOURNAL OF ANIMAL BREEDING AND GENETICS, 2015, 132 (04) : 289 - 300
  • [7] Multiple-trait random regression models for the estimation of genetic parameters for milk, fat, and protein yield in buffaloes
    Aspilcueta Borquis, Rusbel Raul
    de Araujo Neto, Francisco Ribeiro
    Baldi, Fernando
    Hurtado-Lugo, Naudin
    de Camargo, Gregorio M. F.
    Munoz-Berrocal, Milthon
    Tonhati, Humberto
    JOURNAL OF DAIRY SCIENCE, 2013, 96 (09) : 5923 - 5932
  • [8] Genetic Parameters for Milk Yield and Lactation Persistency Using Random Regression Models in Girolando Cattle
    Canaza-Cayo, Ali William
    Lopes, Paulo Savio
    Gualberto Barbosa da Silva, Marcos Vinicius
    Torres, Robledo de Almeida
    Martins, Marta Fonseca
    Arbex, Wagner Antonio
    Cobuci, Jaime Araujo
    ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES, 2015, 28 (10): : 1407 - 1418
  • [9] Comparison of random regression models to estimate genetic parameters for milk production in Guzerat (Bos indicus) cows
    Santos, D. J. A.
    Peixoto, M. G. C. D.
    Aspilcueta Borquis, R. R.
    Verneque, R. S.
    Panetto, J. C. C.
    Tonhati, H.
    GENETICS AND MOLECULAR RESEARCH, 2013, 12 (01) : 143 - 153
  • [10] Random regression models using different functions to estimate genetic parameters for milk production in Holstein Friesians
    Dornelles, Mariana de Almeida
    Nogara Rorato, Paulo Roberto
    Lavadinho da Gama, Luis Telo
    Breda, Fernanda Cristina
    Bondan, Carlos
    Everling, Dioneia Magda
    Michelotti, Vanessa Tomazetti
    Feltes, Giovani Luis
    CIENCIA RURAL, 2016, 46 (09): : 1649 - 1655