Probing interlayer van der Waals strengths of two-dimensional surfaces and defects, through STM tip-induced elastic deformations

被引:2
|
作者
Sarkar, N. [1 ]
Bandaru, P. R. [1 ,3 ]
Dynes, R. C. [2 ,3 ]
机构
[1] Univ Calif San Diego, Dept Mech Engn, La Jolla, CA 92093 USA
[2] Univ Calif San Diego, Dept Phys, La Jolla, CA 92093 USA
[3] Univ Calif San Diego, Program Mat Sci, La Jolla, CA 92093 USA
关键词
scanning tunneling microscopy; moire pattern; atomic deformation; van der Waals; SCANNING-TUNNELING-MICROSCOPY; INTERATOMIC FORCES; GIANT CORRUGATIONS; GRAPHITE SURFACE; GRAPHENE; LAYER;
D O I
10.1088/1361-6528/acb442
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
A methodology to test the interlayer bonding strength of two-dimensional (2D) surfaces and associated one (1D)- and two (2D)- dimensional surface defects using scanning tunneling microscope tip-induced deformation, is demonstrated. Surface elastic deformation characteristics of soft 2D monatomic sheets of graphene and graphite in contrast to NbSe2 indicates related association with the underlying local bonding configurations. Surface deformation of 2D graphitic moire patterns reveal the inter-layer van der Waals strength varying across its domains. These results help in the understanding of the comparable interlayer bonding strength of 1D grain boundary as well as the grains. Anomalous phenomena related to probing 2D materials at small gap distances as a function of strain is discussed.
引用
收藏
页数:7
相关论文
共 9 条
  • [1] Probing van der Waals interactions at two-dimensional heterointerfaces
    Li, Baowen
    Yin, Jun
    Liu, Xiaofei
    Wu, Hongrong
    Li, Jidong
    Li, Xuemei
    Guo, Wanlin
    NATURE NANOTECHNOLOGY, 2019, 14 (06) : 567 - +
  • [2] Polarization switching and electrical control of interlayer excitons in two-dimensional van der Waals heterostructures
    Ciarrocchi, Alberto
    Unuchek, Dmitrii
    Avsar, Ahmet
    Watanabe, Kenji
    Taniguchi, Takashi
    Kis, Andras
    NATURE PHOTONICS, 2019, 13 (02) : 131 - +
  • [3] The impact of substrate surface defects on the properties of two-dimensional van der Waals heterostructures
    Kim, Se-Yang
    Kim, Jung Hwa
    Lee, Sungwoo
    Kwak, Jinsung
    Jo, Yongsu
    Yoon, Euijoon
    Lee, Gun-Do
    Lee, Zonghoon
    Kwon, Soon-Yong
    NANOSCALE, 2018, 10 (40) : 19212 - 19219
  • [4] Recent Progress in Contact Probing Methods of Two-Dimensional Materials and Van Der Waals Heterostructures
    Zhang, Jiazhen
    Chen, Peijian
    Peng, Juan
    Zhang, Yingying
    FRONTIERS IN MECHANICAL ENGINEERING-SWITZERLAND, 2022, 8
  • [5] Complementary Two-Dimensional Vertical Transistors through Lamination with a van der Waals Metal
    Ma, Likuan
    Tao, Quanyang
    Chen, Yang
    Liu, Songlong
    Lu, Zheyi
    Liu, Liting
    Li, Zhiwei
    Lu, Donglin
    Wang, Yiliu
    Liao, Lei
    Liu, Yuan
    PHYSICAL REVIEW APPLIED, 2023, 20 (03)
  • [6] van der Waals-Induced Chromatic Shifts in Hydrogen-Bonded Two-Dimensional Porphyrin Arrays on Boron Nitride
    Korolkov, Vladimir V.
    Svatek, Simon A.
    Summerfield, Alex
    Kerfoott, James
    Yang, Lixu
    Taniguchi, Takashi
    Watanabe, Kenji
    Champness, Neil R.
    Besley, Nicholas A.
    Beton, Peter H.
    ACS NANO, 2015, 9 (10) : 10347 - 10355
  • [7] Van der Waals epitaxial AlGaN/GaN growth on hexagonal BN via two-dimensional N-induced dislocation slip
    Bai, Ling
    Ning, Jing
    Wu, Haidi
    Wang, Boyu
    Wang, Dong
    Li, Zhonghui
    Hao, Yue
    Zhang, Jincheng
    SCRIPTA MATERIALIA, 2024, 248
  • [8] Atomic bonding and electrical characteristics of two-dimensional graphene/boron nitride van der Waals heterostructures with manufacturing defects via binding energy and bond-charge model
    Wang, Jiannan
    Ge, Liangjing
    Deng, Anlin
    Qiu, Hongrong
    Li, Hanze
    Zhu, Yunhu
    Bo, Maolin
    CHEMICAL PHYSICS LETTERS, 2022, 794
  • [9] Biaxial strain, electric field and interlayer distance-tailored electronic structure and magnetic properties of two-dimensional g-C3N4/Li-adsorbed Cr2Ge2Te6 van der Waals heterostructures
    Gao, Yaoqi
    Zhou, Baozeng
    Wang, Xiaocha
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2021, 23 (10) : 6171 - 6181