Evolutionary rate of SARS-CoV-2 increases during zoonotic infection of farmed mink

被引:15
作者
Porter, Ashleigh F. [1 ]
Purcell, Damian F. J. [1 ]
Howden, Benjamin P. [1 ,2 ]
Duchene, Sebastian [1 ]
机构
[1] Univ Melbourne, Peter Doherty Inst Infect & Immun, Dept Microbiol & Immunol, Parkville, VIC 3010, Australia
[2] Univ Melbourne, Peter Doherty Inst Infect & Immun, Microbiol Diagnost Unit Publ Hlth Lab, Parkville, VIC 3010, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
SARS-CoV-2; spillover; mink; evolutionary rate; molecular clock; spike gene; CORONAVIRUS; COVID-19; EPIDEMIC; HEALTH; SARS; RECOMBINATION; PATHOGENESIS; DISEASE; ORIGIN; MAFFT;
D O I
10.1093/ve/vead002
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
To investigate genetic signatures of adaptation to the mink host, we characterised the evolutionary rate heterogeneity in mink-associated severe acute respiratory syndrome coronaviruses (SARS-CoV-2). In 2020, the first detected anthropozoonotic spillover event of SARS-CoV-2 occurred in mink farms throughout Europe and North America. Both spill-back of mink-associated lineages into the human population and the spread into the surrounding wildlife were reported, highlighting the potential formation of a zoonotic reservoir. Our findings suggest that the evolutionary rate of SARS-CoV-2 underwent an episodic increase upon introduction into the mink host before returning to the normal range observed in humans. Furthermore, SARS-CoV-2 lineages could have circulated in the mink population for a month before detection, and during this period, evolutionary rate estimates were between 3 x 10(-3) and 1.05 x 10(-2) (95 per cent HPD, with a mean rate of 6.59 x 10(-3)) a four- to thirteen-fold increase compared to that in humans. As there is evidence for unique mutational patterns within mink-associated lineages, we explored the emergence of four mink-specific Spike protein amino acid substitutions Y453F, S1147L, F486L, and Q314K. We found that mutation Y453F emerged early in multiple mink outbreaks and that mutations F486L and Q314K may co-occur. We suggest that SARS-CoV-2 undergoes a brief, but considerable, increase in evolutionary rate in response to greater selective pressures during species jumps, which may lead to the occurrence of mink-specific mutations. These findings emphasise the necessity of ongoing surveillance of zoonotic SARS-CoV-2 infections in the future.
引用
收藏
页数:12
相关论文
共 109 条
[1]   First Description of SARS-CoV-2 Infection in Two Feral American Mink (Neovison vison) Caught in the Wild [J].
Aguilo-Gisbert, Jordi ;
Padilla-Blanco, Miguel ;
Lizana, Victor ;
Maiques, Elisa ;
Munoz-Baquero, Marta ;
Chillida-Martinez, Eva ;
Cardells, Jesus ;
Rubio-Guerri, Consuelo .
ANIMALS, 2021, 11 (05)
[2]  
Andrews N, 2021, medRxiv
[3]   Evolutionary origins of the SARS-CoV-2 sarbecovirus lineage responsible for the COVID-19 pandemic [J].
Boni, Maciej F. ;
Lemey, Philippe ;
Jiang, Xiaowei ;
Lam, Tommy Tsan-Yuk ;
Perry, Blair W. ;
Castoe, Todd A. ;
Rambaut, Andrew ;
Robertson, David L. .
NATURE MICROBIOLOGY, 2020, 5 (11) :1408-+
[4]   Paired SARS-CoV-2 spike protein mutations observed during ongoing SARS-CoV-2 viral transfer from humans to minks and back to humans [J].
Burkholz, Scott ;
Pokhrel, Suman ;
Kraemer, Benjamin R. ;
Mochly-Rosen, Daria ;
Carback, Richard T., III ;
Hodge, Tom ;
Harris, Paul ;
Ciotlos, Serban ;
Wang, Lu ;
Herst, C. V. ;
Rubsamen, Reid .
INFECTION GENETICS AND EVOLUTION, 2021, 93
[5]  
Cameroni E, 2022, NATURE, V602, P664, DOI [10.1038/s41586-021-04386-2, 10.1101/2021.12.12.472269]
[6]   Simulation of the Clinical and Pathological Manifestations of Coronavirus Disease 2019 (COVID-19) in a Golden Syrian Hamster Model: Implications for Disease Pathogenesis and Transmissibility [J].
Chan, Jasper Fuk-Woo ;
Zhang, Anna Jinxia ;
Yuan, Shuofeng ;
Poon, Vincent Kwok-Man ;
Chan, Chris Chung-Sing ;
Lee, Andrew Chak-Yiu ;
Chan, Wan-Mui ;
Fan, Zhimeng ;
Tsoi, Hoi-Wah ;
Wen, Lei ;
Liang, Ronghui ;
Cao, Jianli ;
Chen, Yanxia ;
Tang, Kaiming ;
Luo, Cuiting ;
Cai, Jian-Piao ;
Kok, Kin-Hang ;
Chu, Hin ;
Chan, Kwok-Hung ;
Sridhar, Siddharth ;
Chen, Zhiwei ;
Chen, Honglin ;
To, Kelvin Kai-Wang ;
Yuen, Kwok-Yung .
CLINICAL INFECTIOUS DISEASES, 2020, 71 (09) :2428-2446
[7]   Omicron Variant (B.1.1.529): Infectivity, Vaccine Breakthrough, and Antibody Resistance [J].
Chen, Jiahui ;
Wang, Rui ;
Gilby, Nancy Benovich ;
Wei, Guo-Wei .
JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (02) :412-422
[8]   Persistence and Evolution of SARS-CoV-2 in an Immunocompromised Host [J].
Choi, Bina ;
Choudhary, Manish C. ;
Regan, James ;
Sparks, Jeffrey A. ;
Padera, Robert F. ;
Qiu, Xueting ;
Solomon, Isaac H. ;
Kuo, Hsiao-Hsuan ;
Boucau, Julie ;
Bowman, Kathryn ;
Das Adhikari, U. ;
Winkler, Marisa L. ;
Mueller, Alisa A. ;
Hsu, Tiffany Y. -T. ;
Desjardins, Michael ;
Baden, Lindsey R. ;
Chan, Brian T. ;
Walker, Bruce D. ;
Lichterfeld, Mathias ;
Brigl, Manfred ;
Kwon, Douglas S. ;
Kanjilal, Sanjat ;
Richardson, Eugene T. ;
Jonsson, A. Helena ;
Alter, Galit ;
Barczak, Amy K. ;
Hanage, William P. ;
Yu, Xu G. ;
Gaiha, Gaurav D. ;
Seaman, Michael S. ;
Cernadas, Manuela ;
Li, Jonathan Z. .
NEW ENGLAND JOURNAL OF MEDICINE, 2020, 383 (23) :2291-2293
[9]   Origin and evolution of pathogenic coronaviruses [J].
Cui, Jie ;
Li, Fang ;
Shi, Zheng-Li .
NATURE REVIEWS MICROBIOLOGY, 2019, 17 (03) :181-192
[10]  
Danilenko D., 2021, EMERGENCE Y453F DELT