Modeling and monitoring of a multivariate spatio-temporal network system

被引:9
作者
Wang, Di [1 ]
Li, Fangyu [2 ,3 ]
Liu, Kaibo [4 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mech Engn, Dept Ind Engn & Management, Shanghai, Peoples R China
[2] Beijing Univ Technol, Fac Informat Technol, Beijing Key Lab Computat Intelligence & Intellige, Engn Res Ctr Digital Community,Minist Educ, Beijing, Peoples R China
[3] Beijing Univ Technol, Beijing Lab Urban Mass Transit, Beijing, Peoples R China
[4] Univ Wisconsin, Dept Ind & Syst Engn, Madison, WI USA
基金
美国国家科学基金会;
关键词
Multivariate spatio-temporal autoregressive model; spatio-temporal control schemes; network structure learning; IoT network system; CONTROL CHARTS; GRAPHICAL MODELS; CONTROL SCHEMES; SELECTION; INTERNET; THINGS;
D O I
10.1080/24725854.2021.1973157
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
With the development of information technology, various network systems are created to connect physical objects and people by sensor nodes or smart devices, providing unprecedented opportunities to realize automated interconnected systems and revolutionize people's lives. However, network systems are vulnerable to attacks, due to the integration of physical objects and human behaviors as well as the complex spatio-temporal correlated structures of the network systems. Therefore, how to accurately and effectively model and monitor a network system is critical to ensure information security and support system automation. To address this issue, this article develops a multivariate spatio-temporal modeling and monitoring methodology for a network system by using multiple types of sensor signals collected from the network system. We first propose a Multivariate Spatio-Temporal Autoregressive (MSTA) model by integrating a Gaussian Markov Random Field and a vector autoregressive model structure to characterize the spatio-temporal correlation of the network system. In particular, we develop an iterative model learning algorithm that integrates the Bayesian inference, least squares, and a sum square error-based optimization method to learn the network structure and estimate parameters in the MSTA model. Then, we propose two spatio-temporal control schemes to monitor the network system based on the MSTA model. Numerical experiments and a real case study of an IoT network system are presented to validate the performance of the proposed method.
引用
收藏
页码:331 / 347
页数:17
相关论文
共 50 条
  • [21] Spatio-temporal modeling to identify factors associated with stunting in Indonesia using a Modified Generalized Lasso
    Rahardiantoro, Septian
    Juhanda, Alfidhia Rahman Nasa
    Kurnia, Anang
    Aswi, Aswi
    Sartono, Bagus
    Handayani, Dian
    Soleh, Agus Mohamad
    Yanti, Yusma
    Cramb, Susanna
    [J]. SPATIAL AND SPATIO-TEMPORAL EPIDEMIOLOGY, 2024, 51
  • [22] Motor Imagery Classification Based on CNN-GRU Network with Spatio-Temporal Feature Representation
    Bang, Ji-Seon
    Lee, Seong-Whan
    [J]. PATTERN RECOGNITION, ACPR 2021, PT I, 2022, 13188 : 104 - 115
  • [23] Efficient Sensor Scheduling Strategy Based on Spatio-Temporal Scope Information Model
    Liu, Yang
    Dong, Chen
    Qin, Xiaoqi
    Xu, Xiaodong
    [J]. SENSORS, 2023, 23 (12)
  • [24] Spatio-temporal sensor management for environmental field estimation
    Roy, Venkat
    Simonetto, Andrea
    Leus, Geert
    [J]. SIGNAL PROCESSING, 2016, 128 : 369 - 381
  • [25] Knowledge Representation in Probabilistic Spatio-Temporal Knowledge Bases
    Parisi, Francesco
    Grant, John
    [J]. JOURNAL OF ARTIFICIAL INTELLIGENCE RESEARCH, 2016, 55 : 743 - 798
  • [26] Spatio-temporal patterns of orchids flowering in Cameroonian rainforests
    Texier, N.
    Deblauwe, V.
    Stevart, T.
    Sonke, B.
    Simo-Droissart, M.
    Azandi, L.
    Bose, R.
    Djuikouo, M. -N.
    Kamdem, G.
    Kamdem, N.
    Mayogo, S.
    Zemagho, L.
    Droissart, V.
    [J]. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY, 2018, 62 (11) : 1931 - 1944
  • [27] Aggregate Count Queries in Probabilistic Spatio-temporal Databases
    Grant, John
    Molinaro, Cristian
    Parisi, Francesco
    [J]. SCALABLE UNCERTAINTY MANAGEMENT, SUM 2013, 2013, 8078 : 255 - 268
  • [28] Spatio-temporal variation in the demographic attributes of a generalist mesopredator
    Beasley, James C.
    Olson, Zachary H.
    Dharmarajan, Guha
    Eagan, Timothy S., II
    Rhodes, Olin E., Jr.
    [J]. LANDSCAPE ECOLOGY, 2011, 26 (07) : 937 - 950
  • [29] Probabilistic Models for Spatio-Temporal Photovoltaic Power Forecasting
    Agoua, Xwegnon Ghislain
    Girard, Robin
    Kariniotakis, George
    [J]. IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, 2019, 10 (02) : 780 - 789
  • [30] Spatio-temporal variation in the wintering associations of an alpine bird
    del Mar Delgado, Maria
    Arlettaz, Raphael
    Bettega, Chiara
    Brambilla, Mattia
    de Gabriel Hernando, Miguel
    Espana, Antonio
    Fernandez-Gonzalez, Angel
    Fernandez-Martin, Angel
    Gil, Juan Antonio
    Hernandez-Gomez, Sergio
    Laiolo, Paola
    Resano-Mayor, Jaime
    Obeso, Jose Ramon
    Pedrini, Paolo
    Roa-Alvarez, Isabel
    Schano, Christian
    Scridel, Davide
    Strinella, Eliseo
    Toranzo, Ignasi
    Korner-Nievergelt, Franzi
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY B-BIOLOGICAL SCIENCES, 2021, 288 (1951)