On some singular problems involving the fractional p(x,.) -Laplace operator

被引:4
作者
Ghanmi, A. [1 ]
Chung, N. T. [2 ]
Saoudi, K. [3 ,4 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LR10ES09 Modelisat Math Anal Harmon & Theorie Pot, Tunis, Tunisia
[2] Quang Binh Univ, Dept Math, Dong Hoi, Quang Binh, Vietnam
[3] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, Dammam, Saudi Arabia
关键词
Fractional p(x; )-Laplace operators; existence of solution; singular equations; variational methods; generalized fractional Sobolev space; SOBOLEV SPACES; POSITIVE SOLUTIONS; WEAK SOLUTIONS; NONLINEARITIES; MULTIPLICITY; EXISTENCE; EQUATION;
D O I
10.1080/00036811.2021.1950693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the present paper is to study the existence of solutions for the following nonhomogeneous singular problem involving the fractional p(x,.)-Laplace operator {(-Delta)(p(x,.))(s) u + vertical bar u vertical bar(q(x)-2)u = g(x)u(epsilon-1-.gamma(x)) -/+ lambda f (x, u) in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N (N >= 3), 0 < s, epsilon < 1, lambda is a positive parameter and gamma : (Omega) over bar -> (0, epsilon) is a continuous function, p (Omega) over bar x (Omega) over bar -> (1, infinity) is a bounded, continuous and symmetric function, q : (Omega) over bar (1, infinity) is a continuous function, g is an element of L p(s)*(x)-epsilon/p(s)* (x)+ gamma(x)-2 epsilon (Omega) and g(x) > 0 with p(s) * (x) = Np(x,x)/N-sp(x,x). Here, the nonlinearity f is in C1((Omega) over bar x R) and assumed to satisfy suitable assumptions. Using variational methods combined with monotonicity arguments, we obtain the existence of solutions to the problem in a fractional Sobolev space with variable exponent. To our best knowledge, this paper is the first attempt in the study of singular problems involving fractional p(x,.)-Laplace operators.
引用
收藏
页码:275 / 287
页数:13
相关论文
共 40 条
  • [11] ON A SINGULAR NONLINEAR DIRICHLET PROBLEM
    COCLITE, MM
    PALMIERI, G
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1989, 14 (10) : 1315 - 1327
  • [12] Del Pezzo LM, 2017, ADV OPER THEORY, V2, P435, DOI 10.22034/aot.1704-1152
  • [13] Hitchhiker's guide to the fractional Sobolev spaces
    Di Nezza, Eleonora
    Palatucci, Giampiero
    Valdinoci, Enrico
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2012, 136 (05): : 521 - 573
  • [14] Lebesgue and Sobolev Spaces with Variable Exponents
    Diening, Lars
    Harjulehto, Petteri
    Hasto, Peter
    Ruzicka, Michael
    [J]. LEBESGUE AND SOBOLEV SPACES WITH VARIABLE EXPONENTS, 2011, 2017 : 1 - +
  • [15] On the spaces Lp(x)(Ω) and Wm, p(x)(Ω)
    Fan, XL
    Zhao, D
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2001, 263 (02) : 424 - 446
  • [16] The Nehari manifold for fractional Kirchhoff problems involving singular and critical terms
    Fiscella, Alessio
    Mishra, Pawan Kumar
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2019, 186 : 6 - 32
  • [17] A multiplicity results for a singular problem involving the fractional p-Laplacian operator
    Ghanmi, A.
    Saoudi, K.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2016, 61 (09) : 1199 - 1216
  • [18] Ghanmi A., 2016, FRACTIONAL DIFFERENT, V6, P201
  • [19] Multiplicity of positive solutions for a singular and critical problem
    Giacomoni, J.
    Saoudi, K.
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2009, 71 (09) : 4060 - 4077
  • [20] Fractional Sobolev spaces with variable exponents and fractional p(x)-Laplacians
    Kaufmann, Uriel
    Rossi, Julio D.
    Vidal, Raul
    [J]. ELECTRONIC JOURNAL OF QUALITATIVE THEORY OF DIFFERENTIAL EQUATIONS, 2017, (76) : 1 - 10