On some singular problems involving the fractional p(x,.) -Laplace operator

被引:4
作者
Ghanmi, A. [1 ]
Chung, N. T. [2 ]
Saoudi, K. [3 ,4 ]
机构
[1] Univ Tunis El Manar, Fac Sci Tunis, LR10ES09 Modelisat Math Anal Harmon & Theorie Pot, Tunis, Tunisia
[2] Quang Binh Univ, Dept Math, Dong Hoi, Quang Binh, Vietnam
[3] Univ Imam Abdulrahman Bin Faisal, Coll Sci Dammam, Dammam, Saudi Arabia
[4] Imam Abdulrahman Bin Faisal Univ, Basic & Appl Sci Res Ctr, Dammam, Saudi Arabia
关键词
Fractional p(x; )-Laplace operators; existence of solution; singular equations; variational methods; generalized fractional Sobolev space; SOBOLEV SPACES; POSITIVE SOLUTIONS; WEAK SOLUTIONS; NONLINEARITIES; MULTIPLICITY; EXISTENCE; EQUATION;
D O I
10.1080/00036811.2021.1950693
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The purpose of the present paper is to study the existence of solutions for the following nonhomogeneous singular problem involving the fractional p(x,.)-Laplace operator {(-Delta)(p(x,.))(s) u + vertical bar u vertical bar(q(x)-2)u = g(x)u(epsilon-1-.gamma(x)) -/+ lambda f (x, u) in Omega, u = 0 on partial derivative Omega, where Omega is a smooth bounded domain in R-N (N >= 3), 0 < s, epsilon < 1, lambda is a positive parameter and gamma : (Omega) over bar -> (0, epsilon) is a continuous function, p (Omega) over bar x (Omega) over bar -> (1, infinity) is a bounded, continuous and symmetric function, q : (Omega) over bar (1, infinity) is a continuous function, g is an element of L p(s)*(x)-epsilon/p(s)* (x)+ gamma(x)-2 epsilon (Omega) and g(x) > 0 with p(s) * (x) = Np(x,x)/N-sp(x,x). Here, the nonlinearity f is in C1((Omega) over bar x R) and assumed to satisfy suitable assumptions. Using variational methods combined with monotonicity arguments, we obtain the existence of solutions to the problem in a fractional Sobolev space with variable exponent. To our best knowledge, this paper is the first attempt in the study of singular problems involving fractional p(x,.)-Laplace operators.
引用
收藏
页码:275 / 287
页数:13
相关论文
共 40 条
  • [1] [Anonymous], 2008, Singular Elliptic Problems: Bifurcation and Asymptotic Analysis. Oxford Lecture Series in Mathematics and its Applications
  • [2] Multivalued elliptic operators with nonstandard growth
    Avci, Mustafa
    Pankov, Alexander
    [J]. ADVANCES IN NONLINEAR ANALYSIS, 2018, 7 (01) : 35 - 48
  • [3] On a class of fractional p(x) -Kirchhoff type problems
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    Srati, M.
    [J]. APPLICABLE ANALYSIS, 2021, 100 (02) : 383 - 402
  • [4] EIGENVALUE PROBLEMS INVOLVING THE FRACTIONAL p(x)-LAPLACIAN OPERATOR
    Azroul, E.
    Benkirane, A.
    Shimi, M.
    [J]. ADVANCES IN OPERATOR THEORY, 2019, 4 (02): : 539 - 555
  • [5] ON A NEW FRACTIONAL SOBOLEV SPACE AND APPLICATIONS TO NONLOCAL VARIATIONAL PROBLEMS WITH VARIABLE EXPONENT
    Bahrouni, Anouar
    Radulescu, Vicentiu D.
    [J]. DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2018, 11 (03): : 379 - 389
  • [6] Comparison and sub-supersolution principles for the fractional p(x)-Laplacian
    Bahrouni, Anouar
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 458 (02) : 1363 - 1372
  • [7] Bisci GM, 2016, ENCYCLOP MATH APPL, V162
  • [8] Boulaaras S., 2019, SYMM BASEL, V11
  • [9] Existence of solution for a singular fractional Laplacian problem with variable exponents and indefinite weights
    Chammem, R.
    Ghanmi, A.
    Sahbani, A.
    [J]. COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2021, 66 (08) : 1320 - 1332
  • [10] Chung NT., 2020, TAIWAN J MATH, V23, P1