NeuralMAE: Data-Efficient Neural Architecture Predictor with Masked Autoencoder

被引:0
作者
Liang, Qiaochu [1 ]
Gong, Lei [1 ]
Wang, Chao [1 ]
Zhou, Xuehai [1 ]
Li, Xi [1 ]
机构
[1] Univ Sci & Technol China, Sch Comp Sci & Technol, Hefei, Peoples R China
来源
PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII | 2024年 / 14432卷
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Neural architecture search; Masked autoencoder; Transformer;
D O I
10.1007/978-981-99-8543-2_12
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Predictor-based Neural Architecture Search (NAS) offers a promising solution for enhancing the efficiency of traditional NAS methods. However, it is non-trivial to train the predictor with limited architecture evaluations for efficient NAS. While current approaches typically focus on better utilizing the labeled architectures, the valuable knowledge contained in unlabeled data remains unexplored. In this paper, we propose a self-supervised transformer-based model that effectively leverages unlabeled data to learn meaningful representations of neural architectures, reducing the reliance on labeled data to train a high-performance predictor. Specifically, the predictor is pre-trained with a masking strategy to reconstruct input features in both latent and raw data spaces. To further enhance its representative capability, we introduce a multi-head attention-masking mechanism that guides the model to attend to different representation subspaces from both explicit and implicit perspectives. Extensive experimental results on NAS-Bench-101, NAS-Bench-201 and NAS-Bench-301 demonstrate that our predictor requires less labeled data and achieves superior performance compared to existing predictors. Furthermore, when combined with search strategies, our predictor exhibits promising capability in discovering high-quality architectures.
引用
收藏
页码:142 / 154
页数:13
相关论文
共 25 条
  • [1] Devlin J, 2019, Arxiv, DOI [arXiv:1810.04805, DOI 10.48550/ARXIV.1810.04805]
  • [2] Dong XY, 2020, Arxiv, DOI arXiv:2001.00326
  • [3] Dudziak L., 2020, P ADV NEUR INF PROC, V33, P10480
  • [4] Masked Autoencoders Are Scalable Vision Learners
    He, Kaiming
    Chen, Xinlei
    Xie, Saining
    Li, Yanghao
    Dollar, Piotr
    Girshick, Ross
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR 2022), 2022, : 15979 - 15988
  • [5] Hou Zhenyu, 2023, WWW '23: Proceedings of the ACM Web Conference 2023, P737, DOI 10.1145/3543507.3583379
  • [6] Searching for MobileNetV3
    Howard, Andrew
    Sandler, Mark
    Chu, Grace
    Chen, Liang-Chieh
    Chen, Bo
    Tan, Mingxing
    Wang, Weijun
    Zhu, Yukun
    Pang, Ruoming
    Vasudevan, Vijay
    Le, Quoc V.
    Adam, Hartwig
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 1314 - 1324
  • [7] Jing K., 2022, P 31 INT JOINT C ART, P3114, DOI DOI 10.24963/IJCAI.2022/432
  • [8] Li CJ, 2021, Arxiv, DOI arXiv:2103.10584
  • [9] Progressive Neural Architecture Search
    Liu, Chenxi
    Zoph, Barret
    Neumann, Maxim
    Shlens, Jonathon
    Hua, Wei
    Li, Li-Jia
    Li Fei-Fei
    Yuille, Alan
    Huang, Jonathan
    Murphy, Kevin
    [J]. COMPUTER VISION - ECCV 2018, PT I, 2018, 11205 : 19 - 35
  • [10] Liu HX, 2019, Arxiv, DOI arXiv:1806.09055