A Finite Difference Scheme for the Fractional Laplacian on Non-uniform Grids

被引:4
作者
Vargas, A. M. [1 ]
机构
[1] UNED, Dept Matemat Fundamentales, Madrid, Spain
关键词
Fractional differential equations; Caputo fractional derivative; Fractional Laplacian; Finite difference method; Meshless method; NUMERICAL-METHODS; EQUATIONS; DIFFUSION; TAYLORS;
D O I
10.1007/s42967-023-00323-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this study, we analyze the convergence of the finite difference method on non-uniform grids and provide examples to demonstrate its effectiveness in approximating fractional differential equations involving the fractional Laplacian. By utilizing non-uniform grids, it becomes possible to achieve higher accuracy and improved resolution in specific regions of interest. Overall, our findings indicate that finite difference approximation on non-uniform grids can serve as a dependable and efficient tool for approximating fractional Laplacians across a diverse array of applications.
引用
收藏
页码:1364 / 1377
页数:14
相关论文
共 28 条
[1]  
Bucur C, 2016, LECT NOTES UNIONE MA, V20, P1, DOI 10.1007/978-3-319-28739-3
[2]   On Multivariate Fractional Taylor's and Cauchy' Mean Value Theorem [J].
Cheng, Jinfa .
JOURNAL OF MATHEMATICAL STUDY, 2019, 52 (01) :38-52
[3]  
Collatz L., 1960, NUMERICAL TREATMENT, DOI [10.1007/978-3-662-05500-7, DOI 10.1007/978-3-662-05500-7]
[4]   Duality for the left and right fractional derivatives [J].
Cristina Caputo, M. ;
Torres, Delfim F. M. .
SIGNAL PROCESSING, 2015, 107 :265-271
[5]   The fractional Laplacian operator on bounded domains as a special case of the nonlocal diffusion operator [J].
D'Elia, Marta ;
Gunzburger, Max .
COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2013, 66 (07) :1245-1260
[6]   FRACTIONAL LAPLACIANS : A SHORT SURVEY [J].
Daoud, Maha ;
Laamri, El Haj .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2022, 15 (01) :95-116
[7]   Finite difference method for a fractional porous medium equation [J].
del Teso, Felix .
CALCOLO, 2014, 51 (04) :615-638
[8]   Algorithms for the fractional calculus: A selection of numerical methods [J].
Diethelm, K ;
Ford, NJ ;
Freed, AD ;
Luchko, Y .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2005, 194 (6-8) :743-773
[9]   Weighted finite difference methods for a class of space fractional partial differential equations with variable coefficients [J].
Ding, Zhiqing ;
Xiao, Aiguo ;
Li, Min .
JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2010, 233 (08) :1905-1914
[10]   Reduced-order strategy for meshless solution of plate bending problems with the generalized finite difference method [J].
Ferreira, Augusto Cesar Albuquerque ;
Vieira Ribeiro, Paulo Marcelo .
LATIN AMERICAN JOURNAL OF SOLIDS AND STRUCTURES, 2019, 16 (01)