Gradient estimates for the double phase problems in the whole space

被引:0
作者
Zhang, Bei-Lei [1 ]
Ge, Bin [1 ]
机构
[1] Harbin Engn Univ, Coll Math Sci, Harbin 150001, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2023年 / 31卷 / 12期
基金
黑龙江省自然科学基金;
关键词
regularity; gradient; double phase; Calder on-Zygmund estimate; non-uniform ellipticity; FUNCTIONALS; MINIMIZERS; REGULARITY; CALCULUS; SYSTEMS;
D O I
10.3934/era.2023372
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper presents Calder on-Zygmund estimates for the weak solutions of a class of nonuniformly elliptic equations inRn, which are obtained through the use of the iteration-covering method. More precisely, a global Calder on-Zygmund type result |f|(p1)+a(x)|f|(p2)is an element of(LRn)-R-s()double right arrow|Du|(p1)+a(x)|Du|(p2)is an element of L-s(R-n) for any s>1 is established for the weak solutions of -divA(x,Du)=-divF(x,f) in R-n, which are modeled on, -div(|Du|(p1-2)Du+a(x)|Du|(p2-2)Du)=-div(|f(|p1-2)f+a(x)|f|(p2-2)f),where 0 <= a(<middle dot>)is an element of C0,alpha(R-n), alpha is an element of(0,1] and 1<p1<p2<p1+alpha p1/n.
引用
收藏
页码:7349 / 7364
页数:16
相关论文
共 26 条
  • [1] Gradient estimates for a class of parabolic systems
    Acerbi, Emilio
    Mingione, Giuseppe
    [J]. DUKE MATHEMATICAL JOURNAL, 2007, 136 (02) : 285 - 320
  • [2] [Anonymous], 1997, Fine Regularity of Solutions of Elliptic Partial Differential Equations, DOI DOI 10.1090/SURV/051
  • [3] Calderon-Zygmund estimates for generalized double phase problems
    Baasandorj, Sumiya
    Byun, Sun-Sig
    Oh, Jehan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (07)
  • [4] NON-AUTONOMOUS FUNCTIONALS, BORDERLINE CASES AND RELATED FUNCTION CLASSES
    Baroni, P.
    Colombo, M.
    Mingione, G.
    [J]. ST PETERSBURG MATHEMATICAL JOURNAL, 2016, 27 (03) : 347 - 379
  • [5] Regularity for general functionals with double phase
    Baroni, Paolo
    Colombo, Maria
    Mingione, Giuseppe
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2018, 57 (02)
  • [6] Calderon-Zygmund estimates for elliptic double phase problems with variable exponents
    Byun, Sun-Sig
    Lee, Ho-Sik
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)
  • [7] Calderon-Zygmund estimates for ω-minimizers of double phase variational problems
    Byun, Sun-Sig
    Ryu, Seungjin
    Shin, Pilsoo
    [J]. APPLIED MATHEMATICS LETTERS, 2018, 86 : 256 - 263
  • [8] Calderon-Zygmund estimates and non-uniformly elliptic operators
    Colombo, Maria
    Mingione, Giuseppe
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2016, 270 (04) : 1416 - 1478
  • [9] Bounded Minimisers of Double Phase Variational Integrals
    Colombo, Maria
    Mingione, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 218 (01) : 219 - 273
  • [10] Regularity for Double Phase Variational Problems
    Colombo, Maria
    Mingione, Giuseppe
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2015, 215 (02) : 443 - 496