Nonlinear self-sustaining dynamics in cavity magnomechanics

被引:16
作者
Li, Wenlin [1 ]
Cheng, Jiong [2 ,3 ,4 ]
Gong, Wei-jiang [1 ]
Li, Jie [2 ,3 ]
机构
[1] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[2] Zhejiang Univ, Interdisciplinary Ctr Quantum Informat, State Key Lab Modern Opt Instrumentat, Hangzhou 310027, Peoples R China
[3] Zhejiang Univ, Dept Phys, Zhejiang Prov Key Lab Quantum Technol & Device, Hangzhou 310027, Peoples R China
[4] Ningbo Univ, Sch Phys Sci & Technol, Dept Phys, Ningbo 315211, Peoples R China
基金
中国国家自然科学基金;
关键词
Gaussian noise (electronic) - Phase transitions - Quantum optics;
D O I
10.1103/PhysRevA.108.033518
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
A recent experiment [R. C. Shen et al., Phys. Rev. Lett. 129, 123601 (2022)] has demonstrated the occurrence of nonlinearity-induced asymptotic bistability in cavity magnomechanics. As an extension, we explore the theoretical ground of diverse potential self-sustaining effects in cavity magnomechanics by analyzing its nonlinear dynamics. The attractors which suggest dynamical multistability for the limit cycles are mapped out to the parameter space by deriving the corresponding slow amplitude dynamics. Our quantitative analysis also includes the fluctuation-dissipation process, which quantitatively predicts non-Gaussian phase spreading, amplitude squeezing, and the mixture of multiple limit cycle states. We finally explore the quantum self-sustaining dynamics by solving the full quantum master equation. The paper lays the foundation for various applications, e.g., high-precision measurements, squeezed-state and non-Gaussian-state preparation, and nonlinearly induced quantum phase transitions, based on cavity magnomechanics.
引用
收藏
页数:11
相关论文
共 64 条
[1]   Magnon squeezing enhanced ground-state cooling in cavity magnomechanics [J].
Asjad, M. ;
Li, Jie ;
Zhu, Shi-Yao ;
You, J. Q. .
FUNDAMENTAL RESEARCH, 2023, 3 (01) :3-7
[2]   Cavity optomechanics [J].
Aspelmeyer, Markus ;
Kippenberg, Tobias J. ;
Marquardt, Florian .
REVIEWS OF MODERN PHYSICS, 2014, 86 (04) :1391-1452
[3]   Spin Pumping in Electrodynamically Coupled Magnon-Photon Systems [J].
Bai, Lihui ;
Harder, M. ;
Chen, Y. P. ;
Fan, X. ;
Xiao, J. Q. ;
Hu, C. -M. .
PHYSICAL REVIEW LETTERS, 2015, 114 (22)
[4]   Route to Chaos in Optomechanics [J].
Bakemeier, L. ;
Alvermann, A. ;
Fehske, H. .
PHYSICAL REVIEW LETTERS, 2015, 114 (01)
[5]   Synchronization dynamics of two nanomechanical membranes within a Fabry-Perot cavity [J].
Bemani, F. ;
Motazedifard, Ali ;
Roknizadeh, R. ;
Naderi, M. H. ;
Vitali, D. .
PHYSICAL REVIEW A, 2017, 96 (02)
[6]   Microwave quantum illumination via cavity magnonics [J].
Cai, Qizhi ;
Liao, Jinkun ;
Shen, Bohai ;
Guo, Guangcan ;
Zhou, Qiang .
PHYSICAL REVIEW A, 2021, 103 (05)
[7]  
Carmichael H.J., 1999, Statistical Methods in Quantum Optics, V1
[8]   Single-quadrature quantum magnetometry in cavity electromagnonics [J].
Ebrahimi, M. S. ;
Motazedifard, Ali ;
Harouni, M. Bagheri .
PHYSICAL REVIEW A, 2021, 103 (06)
[9]   Optomechanically induced thermal bistability in an optical microresonator [J].
Fu, Zhoutian ;
Yang, Lan .
PHYSICAL REVIEW A, 2022, 105 (06)
[10]   Phase-noise measurement in a cavity with a movable mirror undergoing quantum Brownian motion [J].
Giovannetti, Vittorio ;
Vitali, David .
Physical Review A - Atomic, Molecular, and Optical Physics, 2001, 63 (02) :023812-023811