Recent progress in the reprogramming of nonribosomal peptide synthetases

被引:2
|
作者
Ishikawa, Fumihiro [1 ,2 ]
Nakamura, Shinya [1 ]
Nakanishi, Isao [1 ]
Tanabe, Genzoh [1 ,2 ]
机构
[1] Kindai Univ, Fac Pharm, Osaka, Japan
[2] Kindai Univ, Fac Pharm, 3-4-1 Kowakae, Higashi Osaka, Osaka 5778502, Japan
关键词
adenylation domain; natural product biosynthesis; nonribosomal peptide synthetase; peptide natural products; reprogramming; BIOSYNTHETIC GENE-CLUSTER; NATURAL-PRODUCTS; BIOCOMBINATORIAL SYNTHESIS; ADENYLATION DOMAINS; CARRIER PROTEIN; XENORHABDUS; SPECIFICITY; EVOLUTION; BIOLOGY; CLONING;
D O I
10.1002/psc.3545
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Nonribosomal peptide synthetases (NRPSs) biosynthesize nonribosomal peptide (NRP) natural products, which belong to the most promising resources for drug discovery and development because of their wide range of therapeutic applications. The results of genetic, biochemical, and bioinformatics analyses have enhanced our understanding of the mechanisms of the NRPS machinery. A major goal in NRP biosynthesis is to reprogram the NRPS machinery to enable the biosynthetic production of designed peptides. Reprogramming strategies for the NRPS machinery have progressed considerably in recent years, thereby increasing the yields and generating modified peptides. Here, the recent progress in NRPS reprogramming and its application in peptide synthesis are described. Nonribosomal peptide synthetases (NRPSs) biosynthesize one of the most promising peptide-based natural products for drug discovery and development, due to their wide range of biological activities and therapeutic potential. A major issue in this field is the reprogramming of the NRPS machinery to allow the biosynthesis of new peptides. Here, we highlight recent advances in NRPS machinery reprogramming.image
引用
收藏
页数:14
相关论文
共 50 条
  • [41] Desymmetrization of Cyclodepsipeptides by Assembly Mode Switching of Iterative Nonribosomal Peptide Synthetases
    Steiniger, Charlotte
    Hoffmann, Sylvester
    Suessmuth, Roderich D.
    ACS SYNTHETIC BIOLOGY, 2019, 8 (04): : 661 - 667
  • [42] Phylogenomics reveals subfamilies of fungal nonribosomal peptide synthetases and their evolutionary relationships
    Bushley, Kathryn E.
    Turgeon, B. Gillian
    BMC EVOLUTIONARY BIOLOGY, 2010, 10
  • [43] Ways of assembling complex natural products on modular nonribosomal peptide synthetases
    Mootz, HD
    Schwarzer, D
    Marahiel, MA
    CHEMBIOCHEM, 2002, 3 (06) : 490 - 504
  • [44] In Vivo Characterization of Nonribosomal Peptide Synthetases NocA and NocB in the Biosynthesis of Nocardicin A
    Davidsen, Jeanne M.
    Townsend, Craig A.
    CHEMISTRY & BIOLOGY, 2012, 19 (02): : 297 - 306
  • [45] Rational manipulation of carrier-domain geometry in nonribosomal peptide synthetases
    Liu, Ye
    Bruner, Steven D.
    CHEMBIOCHEM, 2007, 8 (06) : 617 - 621
  • [46] Interdomain and Intermodule Organization in Epimerization Domain Containing Nonribosomal Peptide Synthetases
    Chen, Wei -Hung
    Li, Kunhua
    Guntaka, Naga Sandhya
    Bruner, Steven D.
    ACS CHEMICAL BIOLOGY, 2016, 11 (08) : 2293 - 2303
  • [47] The specificity-conferring code of adenylation domains in nonribosomal peptide synthetases
    Stachelhaus, T
    Mootz, HD
    Marahiel, MA
    CHEMISTRY & BIOLOGY, 1999, 6 (08): : 493 - 505
  • [48] Diversity of genes encoding nonribosomal peptide synthetases in the Streptomyces sioyaensis genome
    Myronovskyy, M. L.
    Ostash, B. E.
    Fedorenko, V. A.
    RUSSIAN JOURNAL OF GENETICS, 2010, 46 (07) : 794 - 800
  • [49] Structural insight into the necessary conformational changes of modular nonribosomal peptide synthetases
    Gulick, Andrew M.
    CURRENT OPINION IN CHEMICAL BIOLOGY, 2016, 35 : 89 - 96
  • [50] Application of nonhydrolyzable coenzyme A analogs in manipulation of nonribosomal peptide synthetases geometry
    Liu, Ye
    Bruner, Steve D.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237 : 581 - 581