Computational deep air quality prediction techniques: a systematic review

被引:9
作者
Kaur, Manjit [1 ]
Singh, Dilbag [2 ,3 ]
Jabarulla, Mohamed Yaseen [4 ]
Kumar, Vijay [5 ]
Kang, Jusung [6 ]
Lee, Heung-No [6 ]
机构
[1] SR Univ, Sch Comp Sci & Artificial Intelligence, Warangal 506371, Telangana, India
[2] NYU, Ctr Biomed Imaging, Dept Radiol, Grossman Sch Med, New York, NY 10016 USA
[3] Lovely Profess Univ, Res & Dev Cell, Phagwara 144411, Punjab, India
[4] TU Braunschweig & Hannover Med Sch Med Informat Sy, Peter L Reichertz Inst Med Informat, Campus Hannover, D-30625 Hannover, Germany
[5] Dr BR Ambedkar Natl Inst Technol, Dept Informat Technol, Jalandhar 144008, Punjab, India
[6] Gwangju Inst Sci & Technol GIST, Sch Elect Engn & Comp Sci, Gwangju 31005, South Korea
基金
新加坡国家研究基金会;
关键词
Air pollution; Air quality; Air quality index; Deep learning; Environmental pollution; Human health; EARLY-WARNING SYSTEM; NEURAL-NETWORK; CONVOLUTIONAL NETWORK; LEARNING-MODEL; ENSEMBLE MODEL; TIME-SERIES; AMBIENT AIR; POLLUTION; LSTM; OZONE;
D O I
10.1007/s10462-023-10570-9
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The escalating population and rapid industrialization have led to a significant rise in environmental pollution, particularly air pollution. This has detrimental effects on both the environment and human health, resulting in increased morbidity and mortality. As a response to this pressing issue, the development of air quality prediction models has emerged as a critical research area. In this systematic literature review, we focused on reviewing 203 potential articles published between 2017 and May 2023 obtained from major databases. Our review specifically targeted keywords such as air quality prediction, air pollution prediction, and air quality classification. The review addressed five key research questions, including the types of deep learning (DL) models employed, the performance metrics considered, the best-performing models based on quantitative analysis, and the existing challenges and future prospects in the field. Additionally, we highlighted the limitations of current air quality prediction models and proposed various future research directions to foster further advancements in this area.
引用
收藏
页码:2053 / 2098
页数:46
相关论文
共 197 条
[1]   Probabilistic air quality forecasting using deep learning spatial-temporal neural network [J].
Abirami, S. ;
Chitra, P. .
GEOINFORMATICA, 2023, 27 (02) :199-235
[2]   Regional air quality forecasting using spatiotemporal deep learning [J].
Abirami, S. ;
Chitra, P. .
JOURNAL OF CLEANER PRODUCTION, 2021, 283
[3]   Air Quality Forecasting using Temporal Convolutional Network (TCN) Deep Learning Method [J].
Abu Bakar, Mohd Aftar ;
Ariff, Noratiqah Mohd ;
Abu Bakar, Sakhinah ;
Chi, Goh Pei ;
Rajendran, Ramyah .
SAINS MALAYSIANA, 2022, 51 (11) :3785-3793
[4]  
Aggarwal Apeksha, 2022, Artificial Intelligence and Technologies: Select Proceedings of ICRTAC-AIT 2020. Lecture Notes in Electrical Engineering (806), P663, DOI 10.1007/978-981-16-6448-9_63
[5]   AQE-Net: A Deep Learning Model for Estimating Air Quality of Karachi City from Mobile Images [J].
Ahmed, Maqsood ;
Shen, Yonglin ;
Ahmed, Mansoor ;
Xiao, Zemin ;
Cheng, Ping ;
Ali, Nafees ;
Ghaffar, Abdul ;
Ali, Sabir .
REMOTE SENSING, 2022, 14 (22)
[6]  
Alhirmizy Shaheen., 2019, 2019 International Conference on Computing and Information Science and Technology and Their Applications, P1, DOI DOI 10.1109/ICCISTA.2019.8830667
[7]   Smart wireless health care system using graph LSTM pollution prediction and dragonfly node localization [J].
Bacanin, Nebojsa ;
Sarac, Marko ;
Budimirovic, Nebojsa ;
Zivkovic, Miodrag ;
AlZubi, Ahmad Ali ;
Bashir, Ali Kashif .
SUSTAINABLE COMPUTING-INFORMATICS & SYSTEMS, 2022, 35
[8]   Deep Learning-Based Indoor Air Quality Forecasting Framework for Indoor Subway Station Platforms [J].
Bakht, Ahtesham ;
Sharma, Shambhavi ;
Park, Duckshin ;
Lee, Hyunsoo .
TOXICS, 2022, 10 (10)
[9]   Environmental data treatment to support exposure studies: The statistical behavior for NO2, O3, PM10 and PM2.5 air concentrations in Europe [J].
Bartzis, John G. ;
Kalimeri, Krystallia K. ;
Sakellaris, Ioannis A. .
ENVIRONMENTAL RESEARCH, 2020, 181
[10]   India's Maiden air quality forecasting framework for megacities of divergent environments: The SAFAR-project [J].
Beig, Gufran ;
Sahu, S. K. ;
Anand, V. ;
Bano, S. ;
Maji, S. ;
Rathod, A. ;
Korhale, N. ;
Sobhana, S. B. ;
Parkhi, N. ;
Mangaraj, P. ;
Srinivas, R. ;
Peshin, S. K. ;
Singh, S. ;
Shinde, R. ;
Trimbake, H. K. .
ENVIRONMENTAL MODELLING & SOFTWARE, 2021, 145