Enumerative geometry of surfaces and topological strings

被引:0
作者
Brini, Andrea [1 ]
机构
[1] Univ Sheffield, Sch Math & Stat, Hounsfield Rd, Sheffield S3 7RH, S Yorkshire, England
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS A | 2023年 / 38卷 / 09-10期
关键词
Gromov-Witten; Donaldson-Thomas; Looijenga pairs; mirror symmetry; topological strings; GROMOV-WITTEN INVARIANTS; COHOMOLOGICAL HALL ALGEBRA; STABLE LOGARITHMIC MAPS; QUANTUM RIEMANN-ROCH; CALABI-YAU; LEFSCHETZ; KNOTS; LIMIT;
D O I
10.1142/S0217751X23300089
中图分类号
O57 [原子核物理学、高能物理学];
学科分类号
070202 ;
摘要
This survey covers recent developments on the geometry and physics of Looijenga pairs, namely pairs (X,D) with X a complex algebraic surface and D a singular anticanonical divisor in it. I will describe a surprising web of correspondences linking together several a priori distant classes of enumerative invariants associated to (X,D), including the log Gromov-Witten invariants of the pair, the Gromov-Witten invariants of an associated higher dimensional Calabi-Yau variety, the open Gromov-Witten invariants of certain special Lagrangians in toric Calabi-Yau threefolds, the Donaldson-Thomas theory of a class of symmetric quivers, and certain open and closed BPS-type invariants. I will also discuss how these correspondences can be effectively used to provide a complete closed-form solution to the calculation of all these invariants.
引用
收藏
页数:43
相关论文
共 104 条
  • [1] Abramovich D, 2008, AM J MATH, V130, P1337
  • [2] Abramovich D, 2020, Arxiv, DOI arXiv:1709.09864
  • [3] Birational invariance in logarithmic Gromov-Witten theory
    Abramovich, Dan
    Wise, Jonathan
    [J]. COMPOSITIO MATHEMATICA, 2018, 154 (03) : 595 - 620
  • [4] STABLE LOGARITHMIC MAPS TO DELIGNE-FALTINGS PAIRS II
    Abramovich, Dan
    Chen, Qile
    [J]. ASIAN JOURNAL OF MATHEMATICS, 2014, 18 (03) : 465 - 488
  • [5] The topological vertex
    Aganagic, M
    Klemm, A
    Mariño, M
    Vafa, C
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2005, 254 (02) : 425 - 478
  • [6] Black holes, q-deformed 2d Yang-Mills, and non-perturbative topological strings
    Aganagic, M
    Ooguri, H
    Saulina, N
    Vafa, C
    [J]. NUCLEAR PHYSICS B, 2005, 715 (1-2) : 304 - 348
  • [7] Topological strings and (almost) modular forms
    Aganagic, Mina
    Bouchard, Vincent
    Klemm, Albrecht
    [J]. COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2008, 277 (03) : 771 - 819
  • [8] Aganagic M, 2000, Arxiv, DOI arXiv:hep-th/0012041
  • [9] Open string amplitudes and large order behavior in topological string theory
    Marino, Marcos
    [J]. JOURNAL OF HIGH ENERGY PHYSICS, 2008, (03):
  • [10] TOPOLOGICAL AMPLITUDES IN STRING THEORY
    ANTONIADIS, I
    GAVA, E
    NARAIN, KS
    TAYLOR, TR
    [J]. NUCLEAR PHYSICS B, 1994, 413 (1-2) : 162 - 184