Amphiphilic polyimide-graphene nanoplatelet aerogel composites with high mechanical stability and enhanced thermal insulation properties for oil sorption applications

被引:22
|
作者
Tafreshi, O. A. [1 ]
Ghaffari-Mosanenzadeh, S. [1 ]
Ben Rejeb, Z. [1 ]
Saadatnia, Z. [1 ]
Rastegardoost, M. M. [1 ]
Zhang, C. [2 ]
Park, C. B. [1 ]
Naguib, H. E. [1 ,2 ]
机构
[1] Univ Toronto, Dept Mech & Ind Engn, 5 Kings Coll Rd, Toronto, ON M5S 3G8, Canada
[2] Univ Toronto, Dept Mat Sci & Engn, Wallberg Mem Bldg 184 Coll St, Toronto, ON M5S 3E4, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
Graphene nanoplatelets; Aerogel composite; Sol -gel process; Nanoporous; Optimum content; Sorption capacity; Optimized properties; POLYAMIDE AEROGELS; SILICA; NANOCOMPOSITES; CONDUCTIVITY; REINFORCEMENT; PERFORMANCE; LIGHTWEIGHT; TRANSPORT; BACKBONE; LINKS;
D O I
10.1016/j.mtsust.2023.100403
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
This study presents the fabrication of new polyimide (PI) aerogel composites through incorporation of graphene nanoplatelet (GNP) in PI matrix. A series of PI aerogel composites with various GNP concen-trations were synthesized in a three-step gel preparation method, followed by a supercritical drying procedure. The role of GNP in tuning and optimizing various properties of aerogel composites including physical, thermal, and mechanical properties was discussed. The fabricated aerogel samples showed a significant reduction of shrinkage from 16% for pristine PI aerogel to only 6% in the presence of 0.5 wt% GNP. Further characterizations showed that incorporation of 0.5 wt% GNP also resulted in the highest pore volume (3.5 cc/g), highest surface area (404.5 m2/g), lowest density (- 0.04 g/cm3), and outstanding thermal insulation property (thermal conductivity of only 25.47 mW/m.K). When GNP was incorporated into the solid backbone, it was noticed that even at a very low concentration of 0.1 wt%, the modulus was increased over two times, and the maximum modulus of around 8 MPa was obtained. Such an enhancement in mechanical properties showed that GNP with ultrahigh aspect ratio can not only control and tailor the nanostructured assembly of PI aerogel composites but also due to the better entanglement with polymer chains, a stronger 3D porous network was formed, and thus, GNP can act as a reinforcing filler. Eventually, the sorption capacity and kinetics were determined using various solvents including methanol, acetone, toluene, hexane, and diesel to demonstrate the application of aerogel composites in oil sorption. The results showed that the highest sorption capacity was obtained for PI aerogels with 0.5 wt% GNP, and it could reach 7.3 +/- 0.2 g/g for diesel which was significantly higher than the one for pristine PI aerogels. Unlike the previously reported PI aerogel composites where the enhancement of a specific property would often be associated with the deterioration of several other properties, this study showed that various properties of PI aerogel composites can be improved and optimized through the incorporation of GNP and the control of the aerogel synthesis. The proposed materials can therefore be used as high-performance thermally insulating materials and hold great potential for the removal of oil pollutants and organic solvents.(c) 2023 Elsevier Ltd. All rights reserved.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Review on aqueous graphene nanoplatelet Nanofluids: Preparation, Stability, thermophysical Properties, and applications in heat exchangers and solar thermal collectors
    Huq, Tahsinul
    Ong, Hwai Chyuan
    Chew, Bee Teng
    Leong, Kin Yuen
    Kazi, Salim Newaz
    APPLIED THERMAL ENGINEERING, 2022, 210
  • [32] Mechanical and Thermal Properties of Hierarchical Composites Enhanced by Pristine Graphene and Graphene Oxide Nanoinclusions
    Zhang, B.
    Asmatulu, R.
    Soltani, S. A.
    Le, L. N.
    Kumar, S. S. A.
    JOURNAL OF APPLIED POLYMER SCIENCE, 2014, 131 (19)
  • [33] Thermal stability and mechanical properties of solution mixing-processed co-polyamide-graphene composites at extremely low graphene loading
    Liu, Xin
    Shao, Xiao-Yu
    Wang, Le-Ying
    He, Hai-Feng
    Fang, Guan-Biao
    HIGH PERFORMANCE POLYMERS, 2018, 30 (01) : 16 - 23
  • [34] Synthesis and characterization of novel phenolic resin/silicone hybrid aerogel composites with enhanced thermal, mechanical and ablative properties
    Yin, Rongying
    Cheng, Haiming
    Hong, Changqing
    Zhang, Xinghong
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2017, 101 : 500 - 510
  • [35] Enhanced stress transfer and thermal properties of polyimide composites with covalent functionalized reduced graphene oxide
    Cao, Li
    Sun, Qingqing
    Wang, Haixia
    Zhang, Xingxiang
    Shi, Haifeng
    COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2015, 68 : 140 - 148
  • [36] TiB2 reinforced hybrid-fabric composites with enhanced thermal and mechanical properties for high-temperature tribological applications
    Yuan, Junya
    Zhang, Zhaozhu
    Yang, Mingming
    Guo, Fang
    Men, Xuehu
    Liu, Weimin
    TRIBOLOGY INTERNATIONAL, 2017, 115 : 8 - 17
  • [37] Effects of different amine-functionalized graphene oxide on the mechanical and thermal properties of polyimide composites
    Zhang, Yuxia
    Liu, Haojie
    Liu, Menghan
    Ma, Xiaofan
    Shi, Haifeng
    HIGH PERFORMANCE POLYMERS, 2023, 35 (09) : 963 - 973
  • [38] Enhanced Mechanical and Thermal Properties of Short Carbon Fiber Reinforced Polypropylene Composites by Graphene Oxide
    Wang, Cui-Cui
    Zhao, Yue-Ying
    Ge, He-Yi
    Qian, Ru-Sheng
    POLYMER COMPOSITES, 2018, 39 (02) : 405 - 413
  • [39] High-Performance Pristine Graphene/Epoxy Composites With Enhanced Mechanical and Electrical Properties
    Wajid, Ahmed S.
    Ahmed, H. S. Tanvir
    Das, Sriya
    Irin, Fahmida
    Jankowski, Alan F.
    Green, Micah J.
    MACROMOLECULAR MATERIALS AND ENGINEERING, 2013, 298 (03) : 339 - 347
  • [40] Reduced silanized graphene oxide/epoxy-polyurethane composites with enhanced thermal and mechanical properties
    Lin, Jing
    Zhang, Peipei
    Zheng, Cheng
    Wu, Xu
    Mao, Taoyan
    Zhu, Mingning
    Wang, Huaquan
    Feng, Danyan
    Qian, Shuxuan
    Cai, Xianfang
    APPLIED SURFACE SCIENCE, 2014, 316 : 114 - 123