Chiral Metasurface Vortex Focusing in Terahertz Band Based on Deep Learning

被引:3
作者
Chen, Sixue [1 ,2 ]
Hou, Zheyu [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Qiu, Yihang [1 ,2 ]
Li, Zhiqi [1 ,2 ]
Shen, Jian [1 ,2 ]
Li, Chaoyang [1 ,2 ]
机构
[1] Hainan Univ, Sch Informat & Commun Engn, Haikou 570228, Peoples R China
[2] Hainan Univ, State Key Lab Marine Resource Utilizat South China, Haikou 570228, Peoples R China
基金
海南省自然科学基金;
关键词
Metasurfaces; Focusing; Deep learning; Generators; Structural engineering; Phased arrays; Neural networks; Chiral metasurface; transmission; deep learning; reverse design; vortex beam;
D O I
10.1109/LPT.2023.3264472
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This work demonstrates an on-demand design approach to reverse the design of the chiral metasurface structure by the given target circular dichroism (CD) value, which is based on deep learning. A conditional generation network (RCGN) with a mean absolute error (MAE) of 0.027 was built in this work. Using this network, the metasurface structure with a CD up to 0.471 can be designed, verifying the validity and feasibility of the reverse metasurface design structure. At a frequency of 1.126 THz, the right-hand circularly polarised wave can be phase-modulated by Pancharatnam Berry (PB) to achieve the function of focusing the vortex beam of a metasurface array. The addition of the reverse design-on-demand feature based on deep learning makes the process of designing metasurface structures much faster and more accurate.
引用
收藏
页码:637 / 640
页数:4
相关论文
共 20 条
  • [11] Deep learning for the design of photonic structures
    Ma, Wei
    Liu, Zhaocheng
    Kudyshev, Zhaxylyk A.
    Boltasseva, Alexandra
    Cai, Wenshan
    Liu, Yongmin
    [J]. NATURE PHOTONICS, 2021, 15 (02) : 77 - 90
  • [12] Mirza M, 2014, Arxiv, DOI arXiv:1411.1784
  • [13] Deep learning enabled inverse design in nanophotonics
    So, Sunae
    Badloe, Trevon
    Noh, Jaebum
    Rho, Junsuk
    Bravo-Abad, Jorge
    [J]. NANOPHOTONICS, 2020, 9 (05) : 1041 - 1057
  • [14] Achieving broadband absorption and polarization conversion with a vanadium dioxide metasurface in the same terahertz frequencies
    Song, Zhengyong
    Zhang, Jiahe
    [J]. OPTICS EXPRESS, 2020, 28 (08) : 12487 - 12497
  • [15] Optical circular dichroism engineering in chiral metamaterials utilizing a deep learning network
    Tao, Zilong
    You, Jie
    Zhang, Jun
    Zheng, Xin
    Liu, Hengzhu
    Jiang, Tian
    [J]. OPTICS LETTERS, 2020, 45 (06) : 1403 - 1406
  • [16] High transmission focusing lenses based on ultrathin all-dielectric Huygens' metasurfaces
    Tian, Yanqing
    Li, Zhiwei
    Xu, Zhenyu
    Wei, Yunbing
    Wu, Fei
    [J]. OPTICAL MATERIALS, 2020, 109
  • [17] Reflective chiral meta-holography: multiplexing holograms for circularly polarized waves
    Wang, Qiu
    Plum, Eric
    Yang, Quanlong
    Zhang, Xueqian
    Xu, Quan
    Xu, Yuehong
    Han, Jiaguang
    Zhang, Weili
    [J]. LIGHT-SCIENCE & APPLICATIONS, 2018, 7
  • [18] Integrated Silicon Photonic Crystals Toward Terahertz Communications
    Withayachumnankul, Withawat
    Fujita, Masayuki
    Nagatsuma, Tadao
    [J]. ADVANCED OPTICAL MATERIALS, 2018, 6 (16):
  • [19] Chirality-Assisted High-Efficiency Metasurfaces with Independent Control of Phase, Amplitude, and Polarization
    Xu, He-Xiu
    Hu, Guangwei
    Han, Lei
    Jiang, Menghua
    Huang, Yongjun
    Li, Ying
    Yang, Xinmi
    Ling, Xiaohui
    Chen, Liezun
    Zhao, Jianlin
    Qiu, Cheng-Wei
    [J]. ADVANCED OPTICAL MATERIALS, 2019, 7 (04)
  • [20] Optically tunable all-silicon chiral metasurface in terahertz band
    Zheng, Chenglong
    Li, Jie
    Wang, Silei
    Li, Jitao
    Li, Mengyao
    Zhao, Hongliang
    Hao, Xuanruo
    Zang, Huaping
    Zhang, Yating
    Yao, Jianquan
    [J]. APPLIED PHYSICS LETTERS, 2021, 118 (05)