Approximate extension in Sobolev space

被引:1
作者
Drake, Marjorie K.
机构
基金
美国国家科学基金会;
关键词
Approximate Extension; Sobolev Space; Whitney's Extension Theorem; Extension and Trace Problems; Interpolation; Linearized Banach couple; M-SMOOTH FUNCTION;
D O I
10.1016/j.aim.2023.108999
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let Lm,p(Rn) be the homogeneous Sobolev space for p is an element of (n, infinity), mu be a Borel regular measure on Rn, and Lm,p(Rn) + Lp(d mu) be the space of Borel measurable functions with finite seminorm ;Lm,p(Rn)+Lp(d mu) := inff1+f2=f 1pLm,p(Rn) + fRn |f2|pd mu}1/p. We construct a linear operator T : Lm,p(Rn) + Lp(d mu) -> Lm,p(Rn), that nearly optimally decomposes every function in the sum space: pLm,p(Rn) + ilen|Tf - f|pd mu <= C & pLm,p(Rn)+Lp(d mu) with C dependent on m, n, and p only. For E subset of Rn, let Lm,p(E) denote the space of all restrictions to E of functions F is an element of Lm,p(Rn), equipped with the standard trace seminorm. For p is an element of (n, infinity), we construct a linear extension operator T : Lm,p(E) -> Lm,p(Rn) satisfying Tf|E = f|E and Lm,p(Rn) <= C & Lm,p(E), where C depends only on n, m, and p. We show these operators can be expressed through a collection of linear functionals whose supports have bounded overlap. (c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页数:126
相关论文
共 25 条
[1]  
[Anonymous], 1970, PRINCETON MATH SERIE
[2]   Differentiable functions defined in closed sets. A problem of Whitney [J].
Bierstone, E ;
Milman, PD ;
Pawlucki, W .
INVENTIONES MATHEMATICAE, 2003, 151 (02) :329-352
[3]  
Brudnyi A, 2012, MG MATH, V102, P1, DOI 10.1007/978-3-0348-0209-3
[4]  
Brudnyi Y., 1994, INT MATH RES NOT, V1994, P129
[5]  
Brudnyi Y., 1997, J. Geom. Anal., V7, P515
[6]  
Brudnyi Y.A., 1971, Trudy Moscov. Math Obshch, V24, P69
[7]  
Fefferman C, 2005, REV MAT IBEROAM, V21, P577
[8]   Cm extension by linear operators [J].
Fefferman, Charles .
ANNALS OF MATHEMATICS, 2007, 166 (03) :779-835
[9]  
Fefferman C, 2007, REV MAT IBEROAM, V23, P269
[10]   Whitney's extension problem for Cm [J].
Fefferman, Charles .
ANNALS OF MATHEMATICS, 2006, 164 (01) :313-359