Linear Regression and Machine Learning for Nuclear Forensics of Spent Fuel from Six Types of Nuclear Reactors

被引:17
作者
Chen, Shengli [1 ]
Wang, Tianxiang [1 ]
Zhang, Zhong [1 ]
Li, Runfeng [1 ]
Yuan, Su [1 ]
Zhang, Ruiyi [1 ]
Yuan, Cenxi [1 ]
Zhang, Chunyu [1 ]
Zhu, Jianyu [2 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Guangdong, Peoples R China
[2] China Acad Engn Phys, Ctr Strateg Studies, Beijing 100088, Peoples R China
基金
中国国家自然科学基金;
关键词
MULTIVARIATE STATISTICAL-ANALYSIS; ISOTOPIC CONCENTRATIONS; PLUTONIUM; IDENTIFICATION; DISCRIMINATION; URANIUM; ORIGIN;
D O I
10.1103/PhysRevApplied.19.034028
中图分类号
O59 [应用物理学];
学科分类号
摘要
The illicit trafficking of radioactive materials, especially weapon-grade uranium or plutonium, is a sig-nificant security threat. Nuclear forensics helps trace the illicit trafficking of radioactive materials. The present study develops the methods for the forensics of the possible origins of fuels irradiated in nuclear reactors, which are the most powerful sources producing radioactive materials, including plutonium. Three key factors are significant for irradiated fuel forensics, namely, initial 235U enrichment, burnup, and the type of irradiation nuclear reactors. The methods for the first two are determined based on experimental data of six nuclear-reactor technologies and are further verified using the neutron-transport-depletion cou-pling simulation of the two major commercial reactor technologies, a pressurized-water reactor (PWR) and a boiling-water reactor (BWR). In addition, three machine-learning techniques are applied to discrim-inate between a PWR and a BWR, which are quite similar in neutronic properties, with nice accuracy and generalization ability. In summary, the presently determined methods provide a reliable pathway to predict the origins of spent nuclear fuels.
引用
收藏
页数:11
相关论文
共 33 条
[1]  
[Anonymous], 2005, Neural Networks: A Comprehensive Foundation (ninth indian reprint ed.)
[2]   Sensitivity of Seismically Cued Antineutrino Detectors to Nuclear Explosions [J].
Carr, Rachel ;
Dalnoki-Veress, Ferenc ;
Bernstein, Adam .
PHYSICAL REVIEW APPLIED, 2018, 10 (02)
[3]   ENDF/B-VII.1 Nuclear Data for Science and Technology: Cross Sections, Covariances, Fission Product Yields and Decay Data [J].
Chadwick, M. B. ;
Herman, M. ;
Oblozinsky, P. ;
Dunn, M. E. ;
Danon, Y. ;
Kahler, A. C. ;
Smith, D. L. ;
Pritychenko, B. ;
Arbanas, G. ;
Arcilla, R. ;
Brewer, R. ;
Brown, D. A. ;
Capote, R. ;
Carlson, A. D. ;
Cho, Y. S. ;
Derrien, H. ;
Guber, K. ;
Hale, G. M. ;
Hoblit, S. ;
Holloway, S. ;
Johnson, T. D. ;
Kawano, T. ;
Kiedrowski, B. C. ;
Kim, H. ;
Kunieda, S. ;
Larson, N. M. ;
Leal, L. ;
Lestone, J. P. ;
Little, R. C. ;
McCutchan, E. A. ;
MacFarlane, R. E. ;
MacInnes, M. ;
Mattoon, C. M. ;
McKnight, R. D. ;
Mughabghab, S. F. ;
Nobre, G. P. A. ;
Palmiotti, G. ;
Palumbo, A. ;
Pigni, M. T. ;
Pronyaev, V. G. ;
Sayer, R. O. ;
Sonzogni, A. A. ;
Summers, N. C. ;
Talou, P. ;
Thompson, I. J. ;
Trkov, A. ;
Vogt, R. L. ;
van der Marck, S. C. ;
Wallner, A. ;
White, M. C. .
NUCLEAR DATA SHEETS, 2011, 112 (12) :2887-2996
[4]   Uncertainty propagation from n+56Fe nuclear reaction model parameters to neutron multiplication factor [J].
Chen, Shengli ;
Vandermeersch, Elias ;
Tamagno, Pierre ;
Bernard, David ;
Noguere, Gilles ;
Blaise, Patrick .
ANNALS OF NUCLEAR ENERGY, 2021, 163
[5]   Radial distributions of power and isotopic concentrations in candidate accident tolerant fuel U3Si2 and UO2/U3Si2 fuel pins with FeCrAl cladding [J].
Chen, Shengli ;
Yuan, Cenxi ;
Guo, Daxi .
ANNALS OF NUCLEAR ENERGY, 2019, 124 :460-471
[6]   Transmutation Study of Minor Actinides in Mixed Oxide Fueled Typical Pressurized Water Reactor Assembly [J].
Chen, Shengli ;
Yuan, Cenxi .
JOURNAL OF NUCLEAR ENGINEERING AND RADIATION SCIENCE, 2018, 4 (04)
[7]   Measurements of Short-Lived Isomers from Photofission as a Method of Active Interrogation for Special Nuclear Materials [J].
Finch, S. W. ;
Bhike, M. ;
Howell, C. R. ;
Krishichayan ;
Tornow, W. ;
Tonchev, A. P. ;
Wilhelmy, J. B. .
PHYSICAL REVIEW APPLIED, 2021, 15 (03)
[8]   233U/236U signature allows to distinguish environmental emissions of civil nuclear industry from weapons fallout [J].
Hain, K. ;
Steier, P. ;
Froehlich, M. B. ;
Golser, R. ;
Hou, X. ;
Lachner, J. ;
Nomura, T. ;
Qiao, J. ;
Quinto, F. ;
Sakaguchi, A. .
NATURE COMMUNICATIONS, 2020, 11 (01)
[9]   Non-natural ruthenium isotope ratios of the undeclared 2017 atmospheric release consistent with civilian nuclear activities [J].
Hopp, Timo ;
Zok, Dorian ;
Kleine, Thorsten ;
Steinhauser, Georg .
NATURE COMMUNICATIONS, 2020, 11 (01)
[10]  
International Atomic Energy Agency,, 2015, NUCL FOR SUPP INV