The λ4-Connectivity of the Cartesian Product of Trees

被引:0
作者
Li, Hengzhe [1 ]
Wang, Jiajia [1 ]
Hao, Rong-Xia [2 ]
机构
[1] Henan Normal Univ, Coll Math & Informat Sci, Xinxiang 453007, Peoples R China
[2] Beijing Jiaotong Univ, Dept Math, Beijing 100044, Peoples R China
关键词
Connectivity; 4-connectivity; Cartesian product; tree; GENERALIZED EDGE-CONNECTIVITY; CAYLEY-GRAPHS; 3-CONNECTIVITY; 4-CONNECTIVITY; BOUNDS;
D O I
10.1142/S0219265922500074
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given a connected graph G and S subset of V (G) with vertical bar S vertical bar >= 2, an S-tree is a such subgraph T = (V 0;E0) of G that is a tree with S subset of V 0. Two S-trees T and T 0 are edge-disjoint if E (T) boolean AND E(T' = empty set). Let lambda(G)(S) be the maximum size of a set of edge-disjoint S-trees in G. The lambda(k)-connectivity of G is defined as lambda(k)(G) = minf{lambda(G)(S) : S subset of V (G); vertical bar S vertical bar = k}. In this paper, we first show some structural properties of edge-disjoint S-trees by Fan Lemma and Konig-ore Formula. Then, the lambda -connectivity of the Cartesian product of trees is determined. That is, let T-n1; T-n2 ...,T-nk be trees, then lambda(4)(T-n1 square T-n1 center dot center dot center dot square 2T(nk)) = k if vertical bar V (T-ni)vertical bar >= 4 for each i is an element of {1, 2, ...,k}, otherwise lambda(4) (T-n1 square T-n2 square 2T(nk)) = k - 1. As corollaries, lambda(4)-connectivity for some graph classes such as hypercubes and meshes can be obtained directly.
引用
收藏
页数:22
相关论文
共 30 条
[1]  
Bondy J.A., 2008, Graduate Texts in Mathematics, V244, DOI DOI 10.1007/978-1-84628-970-5
[2]   Rainbow Trees in Graphs and Generalized Connectivity [J].
Chartrand, Gary ;
Okamoto, Futaba ;
Zhang, Ping .
NETWORKS, 2010, 55 (04) :360-367
[3]  
Chartrand LLG., 1984, Bull Bombay Math Colloq, V2, P1
[4]  
Dirac Gabriel Andriew, 1960, Math. Nachr., V22, P61, DOI [10.1002/mana.19600220107.72, DOI 10.1002/MANA.19600220107]
[5]   PENDANT TREE-CONNECTIVITY [J].
HAGER, M .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 1985, 38 (02) :179-189
[6]  
Hind H., 1996, C NUMER, P179
[7]   The λ3-connectivity and κ3-connectivity of recursive circulants [J].
Li, Hengzhe ;
Wang, Jiajia .
APPLIED MATHEMATICS AND COMPUTATION, 2018, 339 :750-757
[8]   Steiner tree packing number and tree connectivity [J].
Li, Hengzhe ;
Wu, Baoyindureng ;
Meng, Jixiang ;
Ma, Yingbin .
DISCRETE MATHEMATICS, 2018, 341 (07) :1945-1951
[9]   The generalized 3-connectivity of graph products [J].
Li, Hengzhe ;
Ma, Yingbin ;
Yang, Weihua ;
Wang, Yifei .
APPLIED MATHEMATICS AND COMPUTATION, 2017, 295 :77-83
[10]  
Li HZ, 2012, DISCRETE MATH THEOR, V14, P43