Sparse spatio-temporal autoregressions by profiling and bagging

被引:10
|
作者
Ma, Yingying [1 ]
Guo, Shaojun [2 ]
Wang, Hansheng [3 ]
机构
[1] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China
[2] Renmin Univ China, Inst Stat & Big Data, Beijing, Peoples R China
[3] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Coefficient matrices; Social network data analysis; Spatial panel dynamic models; Bagging-based estimator; DYNAMIC PANEL-DATA; DATA MODELS; GMM ESTIMATION; SELECTION; LIKELIHOOD;
D O I
10.1016/j.jeconom.2020.10.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a new class of spatio-temporal models with sparse autoregressive coef-ficient matrices and exogenous variable. To estimate the model, we first profile the exogenous variable out of the response. This leads to a profiled model structure. Next, to overcome endogeneity issue, we propose a class of generalized methods of moment (GMM) estimators to estimate the autoregressive coefficient matrices. A novel bagging -based estimator is further developed to conquer the over-determined issue which also occurs in Chang et al. (2015) and Dou et al. (2016). An adaptive forward-backward greedy algorithm is proposed to learn the sparse structure of the autoregressive coeffi-cient matrices. A new BIC-type selection criteria is further developed to conduct variable selection for GMM estimators. Asymptotic properties are further studied. The proposed methodology is illustrated with extensive simulation studies. A social network dataset is analyzed for illustration purpose.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 147
页数:16
相关论文
共 50 条
  • [21] Cerebron: A Reconfigurable Architecture for Spatio-Temporal Sparse Spiking Neural Networks
    Chen, Qinyu
    Gao, Chang
    Fu, Yuxiang
    IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, 2022, 30 (10) : 1425 - 1437
  • [22] Spatio-Temporal Structured Sparse Regression With Hierarchical Gaussian Process Priors
    Kuzin, Danil
    Isupova, Olga
    Mihaylova, Lyudmila
    IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (17) : 4598 - 4611
  • [23] Spatio-Temporal Convolutional Sparse Auto-Encoder for Sequence Classification
    Baccouche, Moez
    Mamalet, Franck
    Wolf, Christian
    Garcia, Christophe
    Baskurt, Atilla
    PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2012, 2012,
  • [24] Multi-sensory integration using sparse spatio-temporal encoding
    Rao, A. Ravishankar
    Cecchi, Guillermo
    2013 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2013,
  • [25] Spatio-Temporal Sparse Graph Convolution Network for Hand Gesture Recognition
    Ikne, Omar
    Slama, Rim
    Saoudi, Hichem
    Wannous, Hazem
    2024 IEEE 18TH INTERNATIONAL CONFERENCE ON AUTOMATIC FACE AND GESTURE RECOGNITION, FG 2024, 2024,
  • [26] Scalable spatio-temporal smoothing via hierarchical sparse Cholesky decomposition
    Jurek, Marcin
    Katzfuss, Matthias
    ENVIRONMETRICS, 2023, 34 (01)
  • [27] Blur-aware Spatio-temporal Sparse Transformer for Video Deblurring
    Zhang, Huicong
    Xie, Haozhe
    Yao, Hongxun
    2024 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2024, 2024, : 2673 - 2681
  • [28] Sparse binarised statistical dynamic features for spatio-temporal texture analysis
    Shervin Rahimzadeh Arashloo
    Signal, Image and Video Processing, 2019, 13 : 575 - 582
  • [30] Real-Time Generative Grasping with Spatio-temporal Sparse Convolution
    Player, Timothy R.
    Chang, Dongsik
    Li, Fuxin
    Hollinger, Geoffrey A.
    2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, : 7981 - 7987