Sparse spatio-temporal autoregressions by profiling and bagging

被引:10
|
作者
Ma, Yingying [1 ]
Guo, Shaojun [2 ]
Wang, Hansheng [3 ]
机构
[1] Beihang Univ, Sch Econ & Management, Beijing, Peoples R China
[2] Renmin Univ China, Inst Stat & Big Data, Beijing, Peoples R China
[3] Peking Univ, Guanghua Sch Management, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Coefficient matrices; Social network data analysis; Spatial panel dynamic models; Bagging-based estimator; DYNAMIC PANEL-DATA; DATA MODELS; GMM ESTIMATION; SELECTION; LIKELIHOOD;
D O I
10.1016/j.jeconom.2020.10.010
中图分类号
F [经济];
学科分类号
02 ;
摘要
We consider a new class of spatio-temporal models with sparse autoregressive coef-ficient matrices and exogenous variable. To estimate the model, we first profile the exogenous variable out of the response. This leads to a profiled model structure. Next, to overcome endogeneity issue, we propose a class of generalized methods of moment (GMM) estimators to estimate the autoregressive coefficient matrices. A novel bagging -based estimator is further developed to conquer the over-determined issue which also occurs in Chang et al. (2015) and Dou et al. (2016). An adaptive forward-backward greedy algorithm is proposed to learn the sparse structure of the autoregressive coeffi-cient matrices. A new BIC-type selection criteria is further developed to conduct variable selection for GMM estimators. Asymptotic properties are further studied. The proposed methodology is illustrated with extensive simulation studies. A social network dataset is analyzed for illustration purpose.(c) 2021 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 147
页数:16
相关论文
共 50 条
  • [1] Banded spatio-temporal autoregressions
    Gao, Zhaoxing
    Ma, Yingying
    Wang, Hansheng
    Yao, Qiwei
    JOURNAL OF ECONOMETRICS, 2019, 208 (01) : 211 - 230
  • [2] Sparse generalized Yule-Walker estimation for large spatio-temporal autoregressions with an application to NO2 satellite data
    Reuvers, Hanno
    Wijler, Etienne
    JOURNAL OF ECONOMETRICS, 2024, 239 (01)
  • [3] A Spatio-Temporal Profiling Model for Person Identification
    Nghi Pham
    Tru Cao
    KNOWLEDGE AND SYSTEMS ENGINEERING (KSE 2013), VOL 1, 2014, 244 : 363 - 373
  • [4] Sparse Spatio-temporal Gaussian Processes with General Likelihoods
    Hartikainen, Jouni
    Riihimaki, Jaakko
    Sarkka, Simo
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING - ICANN 2011, PT I, 2011, 6791 : 193 - 200
  • [5] Sparse Spatio-temporal Inference of Electromagnetic Brain Sources
    Stahlhut, Carsten
    Attias, Hagai T.
    Wipf, David
    Hansen, Lars K.
    Nagarajan, Srikantan S.
    MACHINE LEARNING IN MEDICAL IMAGING, 2010, 6357 : 157 - +
  • [6] Sparse network estimation for dynamical spatio-temporal array models
    Lund, Adam
    Hansen, Niels Richard
    JOURNAL OF MULTIVARIATE ANALYSIS, 2019, 174
  • [7] Online Discovery of Congregate Groups on Sparse Spatio-temporal Data
    Chen, Tianran
    Zhang, Yongzheng
    Tuo, Yupeng
    Wang, Weiguang
    2018 IEEE 29TH ANNUAL INTERNATIONAL SYMPOSIUM ON PERSONAL, INDOOR AND MOBILE RADIO COMMUNICATIONS (PIMRC), 2018,
  • [8] Hierarchical and Spatio-Temporal Sparse Representation for Human Action Recognition
    Tian, Yi
    Kong, Yu
    Ruan, Qiuqi
    An, Gaoyun
    Fu, Yun
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2018, 27 (04) : 1748 - 1762
  • [9] SPARSE CSP ALGORITHM VIA JOINT SPATIO-TEMPORAL FILTERING
    Jiang, Aimin
    Shang, Jing
    Cheng, Weigao
    Liu, Xiaofeng
    Kwan, Hon Keung
    Zhu, Yanping
    2020 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, 2020, : 1035 - 1039
  • [10] Predictive spatio-temporal models for spatially sparse environmental data
    de Luna, X
    Genton, MG
    STATISTICA SINICA, 2005, 15 (02) : 547 - 568