Self-synthesized heterogeneous CuFe2O4-MoS2@BC composite as an activator of peroxymonosulfate for the oxidative degradation of tetracycline

被引:48
作者
Wang, Qirui [1 ]
Xiao, Pengfei [1 ]
机构
[1] Northeast Forestry Univ, Coll Forestry, Hexing Rd 26, Harbin 150040, Peoples R China
关键词
Peroxymonosulfate; Tetracycline; Degradation pathway; Reaction mechanism; NANOSCALED MAGNETIC CUFE2O4; CATALYST; PEROXYDISULFATE; ANTIBIOTICS; PERFORMANCE; MECHANISM; OXIDE; MOS2;
D O I
10.1016/j.seppur.2022.122550
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
Transition metal compounds are often used as activators in advanced oxidation processes for the treatment of refractory organics. However, the problems of inter-particle agglomeration, metal ion leaching and difficulty in recycling frequently occurred, resulting in reduced activation performance and secondary pollution. In this study, biochar (BC) was prepared from agricultural waste pine cone shells, and then a self-synthesized hetero-geneous CuFe2O4-MoS2@BC composite was prepared for the first time, which can be used as an activator of peroxymonosulfate (PMS) for the oxidative degradation of tetracycline (TC). Analysis techniques such as XRD, SEM, BET, FT-IR, Raman, XPS, and VSM indicated that the heterogeneous catalyst with good surface properties and catalytic stability has been successfully prepared. When different concentrations of TC were treated with 0.5 g/L CuFe2O4-MoS2@BC and 1 mmol/L PMS, the highest degradation rate could reach 99.66 % after 60 min. Under the interference of pH, common anions and humic acid in the water environment, the degradation system can still achieve high degradation efficiency, showing excellent anti-interference ability and practical applica-bility. The analysis of activation mechanism reveals that the three redox ion pairs Cu+/Cu2+, Fe2+/Fe3+ and Mo4+/Mo6+ simultaneously participated in the activation of PMS, realizing multi-path electron transfer. And MoS2 played an excellent co-catalysis role in promoting the cycling of the valence states of the ions. A total of 24 intermediate products was detected in the degradation process using LC-MS technology, and the possible degradation pathways for TC degradation were proposed. The self-synthesized CuFe2O4-MoS2@BC composite with high catalytic performance, stability, recyclability and low ion leaching rate has broad application prospects in the treatment of tetracycline antibiotic wastewater by activated PMS.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] CuFe2O4 supported on montmorillonite to activate peroxymonosulfate for efficient ofloxacin degradation
    Cao, Xiao-qiang
    Xiao, Fei
    Lyu, Zhi-wen
    Xie, Xiao-yu
    Zhang, Zhi-xing
    Dong, Xing
    Wang, Jun-xiang
    Lyu, Xian-jun
    Zhang, Yi-zhen
    Liang, Yue
    JOURNAL OF WATER PROCESS ENGINEERING, 2021, 44
  • [22] Sulfate radicals induced degradation of tetrabromobisphenol A with nanoscaled magnetic CuFe2O4 as a heterogeneous catalyst of peroxymonosulfate
    Ding, Yaobin
    Zhu, Lihua
    Wang, Nan
    Tang, Heqing
    APPLIED CATALYSIS B-ENVIRONMENTAL, 2013, 129 : 153 - 162
  • [23] Degradation of tetracycline by activated peroxodisulfate using CuFe2O4-loaded biochar
    Zhang, Chenyue
    Wang, Zheng
    Li, Fulin
    Wang, Jiahao
    Xu, Nannan
    Jia, Yannan
    Gao, Shiwei
    Tian, Tian
    Shen, Wei
    JOURNAL OF MOLECULAR LIQUIDS, 2022, 368
  • [24] Yeast-derived biochar to load CoFe2O4: Degradation of tetracycline hydrochloride by heterogeneous activation of peroxymonosulfate
    Zhang, Zijia
    Wang, Zhen
    Tan, Jiaqi
    Zhou, Keqiang
    Garcia-Meza, J. Viridiana
    Song, Shaoxian
    Xia, Ling
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2023, 11 (03):
  • [25] Efficiently activate peroxymonosulfate by Fe3O4@MoS2 for rapid degradation of sulfonamides
    Lu, Jian
    Zhou, Yi
    Zhou, Yanbo
    CHEMICAL ENGINEERING JOURNAL, 2021, 422
  • [26] CoFe 2 O 4 @BC as a heterogeneous catalyst to sustainably activate peroxymonosulfate for boosted degradation of enrofloxacin: Properties, efficiency and mechanism
    Wang, Xinruo
    Wei, Jian
    Zhang, Heng
    Zhou, Peng
    Yao, Gang
    Liu, Yang
    Lai, Bo
    Song, Yonghui
    SEPARATION AND PURIFICATION TECHNOLOGY, 2024, 345
  • [27] Efficient removal of tetracycline using magnetic MnFe2O4/MoS2 nanocomposite activated peroxymonosulfate: Mechanistic insights and performance evaluation
    Xu, Peng
    Xie, Shiqi
    Liu, Xin
    Wang, Lei
    Wu, Ruoxi
    Hou, Baolin
    CHEMICAL ENGINEERING JOURNAL, 2024, 480
  • [28] MgCo2O4@g-C3N4 Composite Induced Peroxymonosulfate Activation for Effective Degradation of Tetracycline Under Visible Light
    Xu, Yang
    Liao, Huiwei
    Deng, Qiulin
    CHEMISTRYSELECT, 2024, 9 (41):
  • [29] Efficient visible light-induced photocatalytic degradation of tetracycline hydrochloride using CuFe2O4 and PANI/CuFe2O4 nanohybrids
    Gaffar, Shayista
    Kumar, Amit
    Alam, Javed
    Riaz, Ufana
    ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH, 2023, 30 (50) : 108878 - 108888
  • [30] Coating magnetic CuFe2O4 nanoparticles with OMS-2 for enhanced degradation of organic pollutants via peroxymonosulfate activation
    Ye, Peng
    Wu, Deming
    Wang, Manye
    Wei, Yi
    Xu, Aihua
    Li, Xiaoxia
    APPLIED SURFACE SCIENCE, 2018, 428 : 131 - 139