Thermostated Susceptible-Infected-Susceptible epidemic model

被引:0
作者
Alrebdi, H. I. [1 ]
Steklain, Andre [2 ]
Amorim, Edgard P. M. [3 ]
Zotos, Euaggelos [4 ,5 ]
机构
[1] Princess Nourah bint Abdulrahman Univ, Coll Sci, Dept Phys, POB 84428, Riyadh 11671, Saudi Arabia
[2] Univ Tecnol Fed Parana, Math Dept, 3165 Ave Silva Jardim, Curitiba, Brazil
[3] Univ Estado Santa Catarina, Dept Fis, BR-89219710 Joinville, SC, Brazil
[4] Aristotle Univ Thessaloniki, Sch Sci, Dept Phys, Thessaloniki 54124, Greece
[5] RUDN Univ, SM Nikolskii Math Inst PeoplesFriendship Univ Rus, Moscow 117198, Russia
关键词
Epidemic; SIS epidemic model; Hamiltonian epidemic model; CANONICAL DYNAMICS; SIMULATIONS;
D O I
10.1016/j.amc.2022.127701
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The evolution of epidemics based on the Susceptible-Infected-Susceptible (SIS) model re-lies on the density of infected individuals rho. Recent results show that the mean density (rho) and its variance Sigma 2 can be regarded as canonical variables and obey Hamilton's equations. Using the Hamiltonian formulation, we study the SIS system coupled to a Nose thermal bath. We reinterpret classical parameters like temperature in an epidemiological context. In contrast to classical epidemiological models, the thermal bath modifies the dynamical behavior of the system by introducing fluctuations, such as those seen in some infectious waves. We study the stability and show that (rho) tends to be half of the value predicted by the original SIS model.(c) 2022 Elsevier Inc. All rights reserved.
引用
收藏
页数:8
相关论文
共 50 条
  • [41] Detection of areas susceptible to land degradation in Cyprus using remote sensed data and environmental quality indices
    Kolios, Stavros
    Mitrakos, Stavros
    Stylios, Chrysostomos
    LAND DEGRADATION & DEVELOPMENT, 2018, 29 (08) : 2338 - 2350
  • [42] Different evolution of S. aureus methicillin-resistant and methicillin-susceptible infections, Argentina
    Barcudi, Danilo
    Blasko, Enrique
    Gonzalez, Maria Jose
    Gagetti, Paula
    Lamberghini, Ricardo
    Garnero, Analia
    Sarkis, Claudia
    Faccone, Diego
    Lucero, Celeste
    Tosoroni, Dario
    Bocco, Jose L.
    Corso, Alejandra
    Sola, Claudia
    HELIYON, 2024, 10 (01)
  • [43] Bifurcation analysis of a population model and epidemic model with delay
    Wei, Junjie
    Zou, Xingfu
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 197 (01) : 169 - 187
  • [44] Backward bifurcation of an epidemic model with treatment
    Wang, Wendi
    MATHEMATICAL BIOSCIENCES, 2006, 201 (1-2) : 58 - 71
  • [45] A stochastic epidemic model on homogeneous networks
    刘茂省
    阮炯
    Chinese Physics B, 2009, (12) : 5111 - 5116
  • [46] Modeling epidemic based on Penna model
    He, MF
    Pan, QH
    Yu, BL
    INTERNATIONAL JOURNAL OF MODERN PHYSICS C, 2005, 16 (05): : 799 - 805
  • [47] MATHEMATICAL MODEL OF ECONOMIC DYNAMICS IN AN EPIDEMIC
    Boranbayev, A.
    Obrosova, N.
    Shananin, A.
    SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2023, 20 (02): : 797 - 813
  • [48] DYNAMICS OF AN IMPROVED SIS EPIDEMIC MODEL
    Memarbashi, Reza
    Tahavor, Milad
    JOURNAL OF THE KOREAN SOCIETY OF MATHEMATICAL EDUCATION SERIES B-PURE AND APPLIED MATHEMATICS, 2023, 30 (02): : 203 - 220
  • [49] A stochastic epidemic model on homogeneous networks
    Liu Mao-Xing
    Ruan Jiong
    CHINESE PHYSICS B, 2009, 18 (12) : 5111 - 5116
  • [50] Optimal vaccination in a SIRS epidemic model
    Federico, Salvatore
    Ferrari, Giorgio
    Torrente, Maria-Laura
    ECONOMIC THEORY, 2024, 77 (1-2) : 49 - 74