Hyers-Ulam stability of Hadamard fractional stochastic differential equations

被引:7
作者
Ben Makhlouf, Abdellatif [1 ]
Mchiri, Lassaad [2 ]
Rhaima, Mohamed [3 ]
Sallay, Jihen [1 ]
机构
[1] Sfax Univ, Fac Sci, Dept Math, BP 1171, Sfax, Tunisia
[2] Univ Evry Val Dessonne, ENSIIE, 1 sq Resistance, F-91025 Evry Courcouronnes, France
[3] King Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Stochastic differential equations; Hadamard fractional derivative; Ulam stability;
D O I
10.2298/FIL2330219B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current article is used to investigate the Hyers-Ulam stability (HUS) of Hadamard stochastic fractional differential equations (HSFDE) by using a version of some fixed point theorem (FPT), a technical lemma and some classical stochastic calculus tools. To show the interest of our results, we present two examples. In this manner, we generalize some recent interesting results.
引用
收藏
页码:10219 / 10228
页数:10
相关论文
共 25 条
[21]   A method of approximate fractional order differentiation with noise immunity [J].
Li, Yuanlu ;
Pan, Chang ;
Meng, Xiao ;
Ding, Yaqing ;
Chen, Haixiu .
CHEMOMETRICS AND INTELLIGENT LABORATORY SYSTEMS, 2015, 144 :31-38
[22]   Some results on the study of Caputo-Hadamard fractional stochastic differential equations [J].
Makhlouf, Abdellatif Ben ;
Mchiri, Lassaad .
CHAOS SOLITONS & FRACTALS, 2022, 155
[23]  
Podlubny I., 1998, FRACTIONAL DIFFERENT, DOI DOI 10.12691/AJMA-1-1-3
[24]   Asymptotic separation between solutions of Caputo fractional stochastic differential equations [J].
Son, Doan Thai ;
Huong, Phan Thi ;
Kloeden, Peter E. ;
Tuan, Hoang The .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2018, 36 (04) :654-664
[25]   Well-posedness and regularity of Caputo-Hadamard fractional stochastic differential equations [J].
Yang, Zhiwei ;
Zheng, Xiangcheng ;
Wang, Hong .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2021, 72 (04)