Hyers-Ulam stability of Hadamard fractional stochastic differential equations

被引:5
作者
Ben Makhlouf, Abdellatif [1 ]
Mchiri, Lassaad [2 ]
Rhaima, Mohamed [3 ]
Sallay, Jihen [1 ]
机构
[1] Sfax Univ, Fac Sci, Dept Math, BP 1171, Sfax, Tunisia
[2] Univ Evry Val Dessonne, ENSIIE, 1 sq Resistance, F-91025 Evry Courcouronnes, France
[3] King Saud Univ, Dept Stat & Operat Res, Coll Sci, POB 2455, Riyadh 11451, Saudi Arabia
关键词
Stochastic differential equations; Hadamard fractional derivative; Ulam stability;
D O I
10.2298/FIL2330219B
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The current article is used to investigate the Hyers-Ulam stability (HUS) of Hadamard stochastic fractional differential equations (HSFDE) by using a version of some fixed point theorem (FPT), a technical lemma and some classical stochastic calculus tools. To show the interest of our results, we present two examples. In this manner, we generalize some recent interesting results.
引用
收藏
页码:10219 / 10228
页数:10
相关论文
共 25 条
  • [1] A survey on Hadamard and Hilfer fractional differential equations: Analysis and stability
    Abbas, Said
    Benchohra, Mouffak
    Lazreg, Jamal-Eddine
    Zhou, Yong
    [J]. CHAOS SOLITONS & FRACTALS, 2017, 102 : 47 - 71
  • [2] Ahmad B., 2017, HADAMARD TYPE FRACTI
  • [3] EXPONENTIAL STABILITY AND STABILIZATION OF FRACTIONAL STOCHASTIC DEGENERATE EVOLUTION EQUATIONS IN A HILBERT SPACE: SUBORDINATION PRINCIPLE
    Ahmadova, Arzu
    Mahmudov, Nazim, I
    Nieto, Juan J.
    [J]. EVOLUTION EQUATIONS AND CONTROL THEORY, 2022, 11 (06): : 1997 - 2015
  • [4] ASYMPTOTIC STABILITY ANALYSIS OF RIEMANN-LIOUVILLE FRACTIONAL STOCHASTIC NEUTRAL DIFFERENTIAL EQUATIONS
    Ahmadova, Arzu
    Mahmudov, Nazim, I
    [J]. MISKOLC MATHEMATICAL NOTES, 2021, 22 (02) : 503 - 520
  • [5] Ulam-Hyers stability of Caputo type fractional stochastic neutral differential equations
    Ahmadova, Arzu
    Mahmudov, Nazim, I
    [J]. STATISTICS & PROBABILITY LETTERS, 2021, 168
  • [6] Caputo-Hadamard Fractional Derivatives of Variable Order
    Almeida, Ricardo
    [J]. NUMERICAL FUNCTIONAL ANALYSIS AND OPTIMIZATION, 2017, 38 (01) : 1 - 19
  • [7] Baleanu D., 2012, FRACTIONAL DYNAMICS, DOI 10.1007/978-1-4614-0457-6
  • [8] Dynamic analysis of a class of fractional-order neural networks with delay
    Chen, Liping
    Chai, Yi
    Wu, Ranchao
    Ma, Tiedong
    Zhai, Houzhen
    [J]. NEUROCOMPUTING, 2013, 111 : 190 - 194
  • [9] A FIXED POINT THEOREM OF ALTERNATIVE FOR CONTRACTIONS ON A GENERALIZED COMPLETE METRIC SPACE
    DIAZ, JB
    MARGOLIS, B
    [J]. BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1968, 74 (02) : 305 - &
  • [10] On Caputo modification of the Hadamard fractional derivatives
    Gambo, Yusuf Y.
    Jarad, Fahd
    Baleanu, Dumitru
    Abdeljawad, Thabet
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2014,