Investigation of de Haas-van Alphen and Shubnikov-de Haas quantum oscillations in PrTe3

被引:1
|
作者
Luo, Xiong [1 ]
Ma, Xiaoxuan [2 ]
Zhang, Junchao [1 ]
Xing, Yu [1 ]
Shen, Aoli [1 ]
Ye, Haoran [1 ]
Shen, Shengchun [3 ]
Peng, Jin [1 ]
Cao, Shixun [2 ]
Dong, Shuai [1 ]
Li, Linglong [1 ]
机构
[1] Southeast Univ, Sch Phys, Key Lab Quantum Mat & Devices, Minist Educ, Nanjing 211189, Peoples R China
[2] Shanghai Univ, Mat Genome Inst, Int Ctr Quantum & Mol Struct, Dept Phys, Shanghai 200444, Peoples R China
[3] Univ Sci & Technol China, Dept Phys, Hefei 230026, Peoples R China
基金
中国国家自然科学基金;
关键词
CHARGE-DENSITY-WAVE;
D O I
10.1103/PhysRevB.109.035121
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The discovery of high mobility in quasi -two-dimensional (2D) rare-earth tritellurides has had a transformative impact on the field of quantum materials, particularly in relation to charge -density -wave phenomena. Despite significant progress, the complex electronic properties of these materials remain enigmatic, primarily due to a lack of comprehensive understanding regarding their transport characteristics. In this paper, we present a meticulous analysis of the magnetic -field -induced properties of PrTe3 in both bulk and nanoflake forms. Our investigations unveil a diverse range of distinct frequencies exhibited by the observed quantum oscillation effect. By combining angular -dependent magnetoresistance with Shubnikov-de Haas quantum oscillations, we successfully fit the data to a 1/cos (theta) dependence model, providing compelling evidence for a 2D -like Fermi surface and underscoring the pronounced 2D nature of the Fermi surface pockets. Furthermore, our findings reveal a zero Berry phase, corroborating the Lifshitz-Onsager quantization rule. Notably, we report a remarkable magnetoresistance value of 1800% in the 60 nm device, coupled with an electron mobility of 4.1x104 cm2 V-1 s-1. These exceptional outcomes are poised to stimulate heightened interest in exploring the potential of layered rare-earth tritellurides in the realm of quantum oscillation.
引用
收藏
页数:8
相关论文
共 50 条
  • [22] DE HAAS-VAN ALPHEN EFFECT IN IRIDIUM
    HORNFELDT, SP
    WINDMILLER, LR
    KETTERSON, JB
    PHYSICAL REVIEW B, 1973, 7 (10) : 4349 - 4357
  • [23] Photonic de Haas-van Alphen effect
    Fang, Kejie
    Yu, Zongfu
    Fan, Shanhui
    OPTICS EXPRESS, 2013, 21 (15): : 18216 - 18224
  • [24] SHUBNIKOV-DE HAAS OSCILLATIONS IN PARA INSB
    BIR, GL
    TAMARIN, PV
    PARFENEV, RV
    JETP LETTERS-USSR, 1972, 15 (01): : 25 - &
  • [25] SHUBNIKOV-DE HAAS OSCILLATIONS IN GALLIUM ANTIMONIDE
    PONOMAREV, AI
    TSIDILKO.IM
    SOVIET PHYSICS SEMICONDUCTORS-USSR, 1968, 1 (11): : 1375 - +
  • [26] SHUBNIKOV-DE HAAS OSCILLATIONS IN A DEGENERATE SEMICONDUCTOR
    MANSFIELD, R
    AMERICAN JOURNAL OF PHYSICS, 1978, 46 (11) : 1154 - 1157
  • [27] Hysteresis in the de Haas-van Alphen effect
    Kramer, RBG
    Egorov, VS
    Jansen, AGM
    Joss, W
    PHYSICAL REVIEW LETTERS, 2005, 95 (18)
  • [28] DE HAAS-VAN ALPHEN EFFECT IN AUGA
    JAN, JP
    PERROTT, CM
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (06): : 800 - &
  • [29] DE HAAS-VAN ALPHEN EFFECT IN NIOBIUM
    SCOTT, GB
    SPRINGFO.M
    BULLETIN OF THE AMERICAN PHYSICAL SOCIETY, 1970, 15 (06): : 801 - &
  • [30] THE DE HAAS-VAN ALPHEN EFFECT IN TIN
    CROFT, GT
    LOVE, WF
    NIX, FC
    PHYSICAL REVIEW, 1952, 86 (04): : 650 - 650