Rates and reversibility of CO2 hydrogenation on Cu-based catalysts

被引:10
|
作者
Lin, Ting C. [1 ]
Bhan, Aditya [1 ]
机构
[1] Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
CO2; hydrogenation; Methanol; Kinetics; Forward rates; Reversible reactions; In situ titration; METHANOL SYNTHESIS; ACTIVE-SITE; COPPER; ZNO; NANOPARTICLES; MORPHOLOGY; INTERFACE; KINETICS; CHLORINE; MODEL;
D O I
10.1016/j.jcat.2023.115214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetics of reaction pathways involved in the conversion of CO2 to methanol and CO on Cu/ZnO/Al2O3 are resolved using in situ chemical titration, steady-state kinetic measurements, and mathematical formalisms for reversibility to probe salient species governing methanol selectivity and yield during CO2 hydrogenation. Across a range of H-2:CO2 = 1:1 to H-2:CO2 = 80.5:1, active site density determined from in situ chlorine uptake remained invariant; hence, observed trends in rates can be interpreted as only arising from reaction kinetics and not from changing active site density. Kinetic and thermodynamic contributions to rates are decoupled to evaluate forward and reverse rates of methanol synthesis and reverse water-gas shift (RWGS) reactions. These kinetic analyses show that the forward rates of methanol synthesis exhibit persistent first order dependence on hydrogen pressure and are inhibited by water more significantly than the forward rates of RWGS. In contrast, the reverse rates of methanol synthesis and RWGS are both inhibited by H-2. Consequently, without any modifications to the Cu/ZnO/Al2O3 catalyst formulation, methanol selectivity can be increased to > 80 % by increasing inlet H-2 partial pressure and methanol yield can be enhanced by similar to 20 % by adding water adsorbents even under conditions far from equilibrium. The kinetic treatments presented herein demonstrate a dearth of H* species during catalysis, provide thermodynamic constraints precluding sequential RWGS and CO hydrogenation as the pathway for methanol synthesis, reveal P-H2 and P-H2O as salient in determining methanol selectivity and yield by impacting both the forward and reverse rates of CO2 hydrogenation on Cu/ZnO/Al2O3, and explicate the fundamentals of novel sorption-enhanced methanol synthesis, which not only alleviates equilibrium constraints but also alters the intrinsic rate at which the system approaches equilibrium.
引用
收藏
页数:11
相关论文
共 50 条
  • [31] Hydrogenation of CO2 to Methanol at Atmospheric Pressure over Cu/ZnO Catalysts: Influence of the Calcination, Reduction, and Metal Loading
    Diez-Ramirez, Javier
    Dorado, Fernando
    Raquel de la Osa, Ana
    Luis Valverde, Jose
    Sanchez, Paula
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (08) : 1979 - 1987
  • [32] Recent Advances of Core-Shell Cu-Based Catalysts for the Reduction of CO2 to C2+ Products
    Li, Lamei
    Su, Jiaqi
    Lu, Jianmei
    Shao, Qi
    CHEMISTRY-AN ASIAN JOURNAL, 2023, 18 (05)
  • [33] Synthesis and evaluation of novel Cu-based adsorbent-containing catalysts for CO2 hydrogenation to methanol and value-added products
    Ismail, Rim
    Saad, Mohamed Ali H.
    Al-Marri, Mohamed J.
    Sardar, Ali
    Mohamed, Assem T.
    El-Naas, Muftah
    Soliman, Ahmed M. S.
    Benamor, Abdelbaki
    JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING, 2024, 12 (02):
  • [34] Structure and function of Cu-based composite catalysts for highly effective synthesis of methanol by hydrogenation of CO2 and CO
    Inui, T
    Hara, H
    Takeguchi, T
    Kim, JB
    CATALYSIS TODAY, 1997, 36 (01) : 25 - 32
  • [35] Cu-based bimetallic electrocatalysts for CO2 reduction
    Jia, Yufei
    Li, Fei
    Fan, Ke
    Sun, Licheng
    ADVANCED POWDER MATERIALS, 2022, 1 (01):
  • [36] CO2 activation on Cu-based Zr-decorated nanoparticles
    Austin, Natalie
    Ye, Jingyun
    Mpourmpakis, Giannis
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (11) : 2245 - 2251
  • [37] Research Progress of CO2 Hydrogenation over Pd-based Heterogeneous Catalysts
    Zhou Leilei
    Cheng Haiyang
    Zhao Fengyu
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2022, 43 (07):
  • [38] Enhanced CO2 hydrogenation to methanol over CuZn nanoalloy in Ga modified Cu/ZnO catalysts
    Li, Molly Meng-Jung
    Zeng, Ziyan
    Liao, Fenglin
    Hong, Xinlin
    Tsang, Shik Chi Edman
    JOURNAL OF CATALYSIS, 2016, 343 : 157 - 167
  • [39] Cu-Based Tandem Catalysts for Electrochemical CO2 Reduction
    Shi, Yongxia
    Hou, Man
    Li, Junjun
    Li, Li
    Zhang, Zhicheng
    ACTA PHYSICO-CHIMICA SINICA, 2022, 38 (11)
  • [40] CO2 hydrogenation to methanol promoted by Cu and metastable tetragonal CexZryOz interface
    Li, Na
    Wang, Weiwei
    Song, Lixin
    Wang, Hui
    Fu, Qiang
    Qu, Zhenping
    JOURNAL OF ENERGY CHEMISTRY, 2022, 68 : 771 - 779