Rates and reversibility of CO2 hydrogenation on Cu-based catalysts

被引:10
|
作者
Lin, Ting C. [1 ]
Bhan, Aditya [1 ]
机构
[1] Univ Minnesota Twin Cities, Dept Chem Engn & Mat Sci, 421 Washington Ave SE, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
CO2; hydrogenation; Methanol; Kinetics; Forward rates; Reversible reactions; In situ titration; METHANOL SYNTHESIS; ACTIVE-SITE; COPPER; ZNO; NANOPARTICLES; MORPHOLOGY; INTERFACE; KINETICS; CHLORINE; MODEL;
D O I
10.1016/j.jcat.2023.115214
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Kinetics of reaction pathways involved in the conversion of CO2 to methanol and CO on Cu/ZnO/Al2O3 are resolved using in situ chemical titration, steady-state kinetic measurements, and mathematical formalisms for reversibility to probe salient species governing methanol selectivity and yield during CO2 hydrogenation. Across a range of H-2:CO2 = 1:1 to H-2:CO2 = 80.5:1, active site density determined from in situ chlorine uptake remained invariant; hence, observed trends in rates can be interpreted as only arising from reaction kinetics and not from changing active site density. Kinetic and thermodynamic contributions to rates are decoupled to evaluate forward and reverse rates of methanol synthesis and reverse water-gas shift (RWGS) reactions. These kinetic analyses show that the forward rates of methanol synthesis exhibit persistent first order dependence on hydrogen pressure and are inhibited by water more significantly than the forward rates of RWGS. In contrast, the reverse rates of methanol synthesis and RWGS are both inhibited by H-2. Consequently, without any modifications to the Cu/ZnO/Al2O3 catalyst formulation, methanol selectivity can be increased to > 80 % by increasing inlet H-2 partial pressure and methanol yield can be enhanced by similar to 20 % by adding water adsorbents even under conditions far from equilibrium. The kinetic treatments presented herein demonstrate a dearth of H* species during catalysis, provide thermodynamic constraints precluding sequential RWGS and CO hydrogenation as the pathway for methanol synthesis, reveal P-H2 and P-H2O as salient in determining methanol selectivity and yield by impacting both the forward and reverse rates of CO2 hydrogenation on Cu/ZnO/Al2O3, and explicate the fundamentals of novel sorption-enhanced methanol synthesis, which not only alleviates equilibrium constraints but also alters the intrinsic rate at which the system approaches equilibrium.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Synthesis and evaluation of lanthana modified Cu-based catalysts for CO2 hydrogenation to value added products
    Ali, Sardar
    Kumar, Dharmesh
    Khader, Mahmoud M.
    Mondal, Kartick C.
    El-Naas, Muftah H.
    MOLECULAR CATALYSIS, 2023, 543
  • [22] Controlling CO2 hydrogenation selectivity by tuning surface properties of Cu/ZnxAlyOz catalysts
    Song, Lixin
    Liu, Guobin
    Qu, Zhenping
    CHEMICAL ENGINEERING JOURNAL, 2024, 494
  • [23] Hydrogenation of CO2 to methanol and CO on Cu/ZnO/Al2O3: Is there a common intermediate or not?
    Kunkes, Edward L.
    Studt, Felix
    Abild-Pedersen, Frank
    Schloegl, Robert
    Behrens, Malte
    JOURNAL OF CATALYSIS, 2015, 328 : 43 - 48
  • [24] Selective CO2 Hydrogenation to Methanol by Halogen Deposition over a Cu-Based Catalyst
    Corda, Massimo
    Chernyak, Sergei A.
    Marinova, Maya
    Morin, Jean-Charles
    Trentesaux, Martine
    Kondratenko, Vita A.
    Kondratenko, Evgenii V.
    Ordomsky, Vitaly V.
    Khodakov, Andrei Y.
    ACS CATALYSIS, 2024, 14 (23): : 17244 - 17252
  • [25] Modulating electronic structure and exposed surface area of Cu-based catalysts by Pd doping for enhanced CO2 2 hydrogenation to methanol
    Han, Caiyun
    Gao, Yunfei
    Qin, Langlang
    Cao, Yu
    Wang, Shuang
    Li, Jinping
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 354
  • [26] Effect of Cu incorporation on Fe-based catalysts for selective CO2 hydrogenation to olefins
    Yusuf, Basiru O.
    Hussain, Ijaz
    Umar, Mustapha
    Alhassan, Aliyu M.
    Aniz, Chennampilly Ummer
    Alhooshani, Khalid R.
    Ali, Syed A.
    Ali, Babar
    Ganiyu, Saheed A.
    JOURNAL OF THE ENERGY INSTITUTE, 2024, 117
  • [27] Unravelling the mechanisms of CO2 hydrogenation to methanol on Cu-based catalysts using first-principles multiscale modelling and experiments
    Hus, Matej
    Kopac, Drejc
    Stefancic, Neja Strah
    Jurkovic, Damjan Lasic
    Dasireddy, Venkata D. B. C.
    Likozar, Blaz
    CATALYSIS SCIENCE & TECHNOLOGY, 2017, 7 (04) : 5900 - 5913
  • [28] Highly efficient Cu-based catalysts via hydrotalcite-like precursors for CO2 hydrogenation to methanol
    Xiao, Shuo
    Zhang, Yanfei
    Gao, Peng
    Zhong, Liangshu
    Li, Xiaopeng
    Zhang, Zhongzheng
    Wang, Hui
    Wei, Wei
    Sun, Yuhan
    CATALYSIS TODAY, 2017, 281 : 327 - 336
  • [29] Unraveling the Role of H2O on Cu-Based Catalyst in CO2 Hydrogenation to Methanol
    Yan, Zhiqiang
    Wang, Yan
    Wang, Xiaoyue
    Xu, Chaoqin
    Zhang, Weimin
    Ban, Hongyan
    Li, Congming
    CATALYSIS LETTERS, 2023, 153 (04) : 1046 - 1056
  • [30] Copper-based catalysts for CO2 hydrogenation: a perspective on active sites
    Shi, Yun-Fei
    Ma, Sicong
    Liu, Zhi-Pan
    EES CATALYSIS, 2023, 1 (06): : 921 - 933