Conjugations on <mml:msup>L2</mml:msup> Space on the Real Line

被引:0
作者
Dymek, Piotr [1 ]
Planeta, Artur [1 ]
Ptak, Marek [1 ]
机构
[1] Agr Univ Krakow, Katedra Zastosowan Matemat, Al Mickiewicza 21, PL-31120 Krakow, Poland
关键词
Conjugation; PT-symmetry; distribution; Fourier transform; toeplitz kernels; Primary; 47A45; Secondary; 47B37; 47G10; 42A38; 81Q12; TOEPLITZ-OPERATORS;
D O I
10.1007/s00025-023-02046-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Influenced by PT operators (parity and time reversal operators) the general conjugations acting in the L2 space on the real line with the Lebesgue measure are studied. The behaviour of conjugations with respect to multiplication operators and translations is investigated. We consider conjugations defined as the convolution of the Fourier transform of a given unimodular (even) function and test functions. We characterize all conjugations commuting (intertwining) with all translation operators on the real line. The conjugations leaving kernels of Toeplitz operators (a generalization of model spaces) on H2 space on the upper half plane invariant are also characterized. Analogous results are obtained for conjugations and kernels of Wiener-Hopf operators.
引用
收藏
页数:30
相关论文
共 23 条
[21]   ALGEBRAIC PROPERTIES OF TRUNCATED TOEPLITZ OPERATORS [J].
Sarason, Donald .
OPERATORS AND MATRICES, 2007, 1 (04) :491-526
[22]  
Schmudgen K., 2012, Graduate Texts in Mathematics, V265
[23]  
Sz-Nagy B, 2010, UNIVERSITEXT, P1, DOI 10.1007/978-1-4419-6094-8