An efficient context-aware approach for whole-slide image classification

被引:6
作者
Shen, Hongru [1 ]
Wu, Jianghua [1 ,2 ]
Shen, Xilin [1 ]
Hu, Jiani [1 ]
Liu, Jilei [1 ]
Zhang, Qiang [3 ]
Sun, Yan [4 ]
Chen, Kexin [5 ]
Li, Xiangchun [1 ]
机构
[1] Tianjin Med Univ, Canc Inst & Hosp, Tianjin Canc Inst, Tianjins Clin Res Ctr Canc,Natl Clin Res Ctr Canc, Tianjin, Peoples R China
[2] Peking Univ, Minist Educ, Key Lab Carcinogenesis & Translat Res, Dept Pathol,Canc Hosp & Inst, Beijing, Peoples R China
[3] Tianjin Med Univ, Dept Maxillofacial & Otorhinolaryngol Oncol, Tianjins Clin Res Ctr Canc, Natl Clin Res Ctr Canc,Canc Inst & Hosp, Tianjin, Peoples R China
[4] Tianjin Med Univ, Key Lab Canc Immunol & Biotherapy, Tianjin Canc Inst & Hosp,Natl Clin Res Ctr Canc, Tianjins Clin Res Ctr Canc,Dept Pathol, Tianjin, Peoples R China
[5] Tianjin Med Univ, Tianjins Clin Res Ctr Canc, Key Lab Mol Canc Epidemiol Tianjin, Natl Clin Res Ctr Canc,Dept Epidemiol & Biostat,Ca, Tianjin, Peoples R China
基金
中国国家自然科学基金;
关键词
PROSTATE-CANCER; HISTOLOGY;
D O I
10.1016/j.isci.2023.108175
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Computational pathology for gigapixel whole-slide images (WSIs) at slide level is helpful in disease diagnosis and remains challenging. We propose a context-aware approach termed WSI inspection via transformer (WIT) for slide-level classification via holistically modeling dependencies among patches on WSI. WIT automatically learns feature representation of WSI by aggregating features of all image patches. We evaluate classification performance of WIT and state-of-the-art baseline method. WIT achieved an accuracy of 82.1% (95% CI, 80.7%-83.3%) in the detection of 32 cancer types on the TCGA dataset, 0.918 (0.910-0.925) in diagnosis of cancer on the CPTAC dataset, and 0.882 (0.87-0.890) in the diagnosis of prostate cancer from needle biopsy slide, outperforming the baseline by 31.6%, 5.4%, and 9.3%, respectively. WIT can pinpoint the WSI regions that are most influential for its decision. WIT represents a new paradigm for computational pathology, facilitating the development of digital pathology tools.
引用
收藏
页数:13
相关论文
共 47 条
[1]   Problems in mesothelioma diagnosis [J].
Addis, Bruce ;
Roche, Heather .
HISTOPATHOLOGY, 2009, 54 (01) :55-68
[2]  
Ba J L., LAYER NORMALIZATION
[3]  
Brown TB, 2020, ADV NEUR IN, V33
[4]   Artificial intelligence for diagnosis and Gleason grading of prostate cancer: the PANDA challenge [J].
Bulten, Wouter ;
Kartasalo, Kimmo ;
Chen, Po-Hsuan Cameron ;
Strom, Peter ;
Pinckaers, Hans ;
Nagpal, Kunal ;
Cai, Yuannan ;
Steiner, David F. ;
van Boven, Hester ;
Vink, Robert ;
Hulsbergen-van de Kaa, Christina ;
van der Laak, Jeroen ;
Amin, Mahul B. ;
Evans, Andrew J. ;
van der Kwast, Theodorus ;
Allan, Robert ;
Humphrey, Peter A. ;
Gronberg, Henrik ;
Samaratunga, Hemamali ;
Delahunt, Brett ;
Tsuzuki, Toyonori ;
Hakkinen, Tomi ;
Egevad, Lars ;
Demkin, Maggie ;
Dane, Sohier ;
Tan, Fraser ;
Valkonen, Masi ;
Corrado, Greg S. ;
Peng, Lily ;
Mermel, Craig H. ;
Ruusuvuori, Pekka ;
Litjens, Geert ;
Eklund, Martin .
NATURE MEDICINE, 2022, 28 (01) :154-+
[5]   Clinical-grade computational pathology using weakly supervised deep learning on whole slide images [J].
Campanella, Gabriele ;
Hanna, Matthew G. ;
Geneslaw, Luke ;
Miraflor, Allen ;
Silva, Vitor Werneck Krauss ;
Busam, Klaus J. ;
Brogi, Edi ;
Reuter, Victor E. ;
Klimstra, David S. ;
Fuchs, Thomas J. .
NATURE MEDICINE, 2019, 25 (08) :1301-+
[6]  
Caron M, 2020, ADV NEUR IN, V33
[7]  
Chen J., 2021, arXiv, DOI DOI 10.48550/ARXIV.2102.04306
[8]   Pan-cancer integrative histology-genomic analysis via multimodal deep learning [J].
Chen, Richard J. ;
Lu, Ming Y. ;
Williamson, Drew F. K. ;
Chen, Tiffany Y. ;
Lipkova, Jana ;
Noor, Zahra ;
Shaban, Muhammad ;
Shady, Maha ;
Williams, Mane ;
Joo, Bumjin ;
Mahmood, Faisal .
CANCER CELL, 2022, 40 (08) :865-+
[9]  
Chen RJ, 2022, IEEE T MED IMAGING, V41, P757, DOI [10.1109/TITS.2020.3030218, 10.1109/TMI.2020.3021387]
[10]  
Chevez-Barrios P., 2021, Uveal Melanoma: Biology and Management, P37, DOI [10.1007/978-3-030-78117-0_4, DOI 10.1007/978-3-030-78117-0_4]