A Continuous Action Space Tree search for INverse desiGn (CASTING) framework for materials discovery

被引:9
作者
Banik, Suvo [1 ,2 ]
Loefller, Troy [1 ,2 ]
Manna, Sukriti [1 ,2 ]
Chan, Henry [1 ,2 ]
Srinivasan, Srilok [1 ]
Darancet, Pierre [1 ]
Hexemer, Alexander [3 ]
Sankaranarayanan, Subramanian K. R. S. [1 ,2 ]
机构
[1] Argonne Natl Lab, Ctr Nanoscale Mat, Lemont, IL 60439 USA
[2] Univ Illinois, Dept Mech & Ind Engn, Chicago, IL 60607 USA
[3] Lawrence Berkeley Natl Lab, Adv Light Source ALS Div, Berkeley, CA 94720 USA
关键词
CRYSTAL-STRUCTURE PREDICTION; GLOBAL OPTIMIZATION; CLUSTERS; ALGORITHM; GOLD; LONSDALEITE; ELECTRONICS; CHALLENGES; CHEMISTRY; SURFACE;
D O I
10.1038/s41524-023-01128-y
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Material properties share an intrinsic relationship with their structural attributes, making inverse design approaches crucial for discovering new materials with desired functionalities. Reinforcement Learning (RL) approaches are emerging as powerful inverse design tools, often functioning in discrete action spaces. This constrains their application in materials design problems, which involve continuous search spaces. Here, we introduce an RL-based framework CASTING (Continuous Action Space Tree Search for inverse design), that employs a decision tree-based Monte Carlo Tree Search (MCTS) algorithm with continuous space adaptation through modified policies and sampling. Using representative examples like Silver (Ag) for metals, Carbon (C) for covalent systems, and multicomponent systems such as graphane, boron nitride, and complex correlated oxides, we showcase its accuracy, convergence speed, and scalability in materials discovery and design. Furthermore, with the inverse design of super-hard Carbon phases, we demonstrate CASTING's utility in discovering metastable phases tailored to user-defined target properties and preferences.
引用
收藏
页数:16
相关论文
共 91 条
[1]   Gold nanoparticles: opportunities and challenges in nanomedicine [J].
Arvizo, Rochelle ;
Bhattacharya, Resham ;
Mukherjee, Priyabrata .
EXPERT OPINION ON DRUG DELIVERY, 2010, 7 (06) :753-763
[2]  
Balasubramanian M, 2002, SCIENCE, V295
[3]  
Banik S., 2023, ChemRxiv
[4]   CEGANN: Crystal Edge Graph Attention Neural Network for multiscale classification of materials environment [J].
Banik, Suvo ;
Dhabal, Debdas ;
Chan, Henry ;
Manna, Sukriti ;
Cherukara, Mathew ;
Molinero, Valeria ;
Sankaranarayanan, Subramanian K. R. S. .
NPJ COMPUTATIONAL MATERIALS, 2023, 9 (01)
[5]   Learning with Delayed Rewards-A Case Study on Inverse Defect Design in 2D Materials [J].
Banik, Suvo ;
Loeffler, Troy David ;
Batra, Rohit ;
Singh, Harpal ;
Cherukara, Mathew J. ;
Sankaranarayanan, Subramanian K. R. S. .
ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (30) :36455-36464
[6]   On representing chemical environments [J].
Bartok, Albert P. ;
Kondor, Risi ;
Csanyi, Gabor .
PHYSICAL REVIEW B, 2013, 87 (18)
[7]   Machine learning overcomes human bias in the discovery of self-assembling peptides [J].
Batra, Rohit ;
Loeffler, Troy D. ;
Chan, Henry ;
Srinivasan, Srilok ;
Cui, Honggang ;
Korendovych, Ivan, V ;
Nanda, Vikas ;
Palmer, Liam C. ;
Solomon, Lee A. ;
Fry, H. Christopher ;
Sankaranarayanan, Subramanian K. R. S. .
NATURE CHEMISTRY, 2022, 14 (12) :1427-+
[8]   A Survey of Monte Carlo Tree Search Methods [J].
Browne, Cameron B. ;
Powley, Edward ;
Whitehouse, Daniel ;
Lucas, Simon M. ;
Cowling, Peter I. ;
Rohlfshagen, Philipp ;
Tavener, Stephen ;
Perez, Diego ;
Samothrakis, Spyridon ;
Colton, Simon .
IEEE TRANSACTIONS ON COMPUTATIONAL INTELLIGENCE AND AI IN GAMES, 2012, 4 (01) :1-43
[9]   Germanium Dumbbells in a New Superconducting Modification of BaGe3 [J].
Castillo, Rodrigo ;
Baranov, Alexey I. ;
Burkhardt, Ulrich ;
Cardoso-Gil, Raul ;
Schnelle, Walter ;
Bobnar, Matej ;
Schwarz, Ulrich .
INORGANIC CHEMISTRY, 2016, 55 (09) :4498-4503
[10]   Atomically Precise Clusters of Noble Metals: Emerging Link between Atoms and Nanoparticles [J].
Chakraborty, Indranath ;
Pradeep, Thalappil .
CHEMICAL REVIEWS, 2017, 117 (12) :8208-8271