Confining Ionic Liquids in Developing Quasi-Solid-State Electrolytes for Lithium Metal Batteries

被引:5
|
作者
Hu, Haiman [1 ]
Li, Jiajia [1 ]
Ji, Xiaoyan [1 ]
机构
[1] Lulea Univ Technol, Div Energy Sci, Energy Engn, S-97187 Lulea, Sweden
基金
欧盟地平线“2020”;
关键词
confinement; ionic liquids; quasi-solid-state electrolytes; lithium metal batteries; GEL POLYMER ELECTROLYTE; IONOGEL ELECTROLYTE; ORGANIC FRAMEWORK; NANOCOMPOSITE ELECTROLYTES; LI+ TRANSPORT; PERFORMANCE; CONDUCTIVITY; CONFINEMENT; DESIGN; MEMBRANES;
D O I
10.1002/chem.202302826
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The concept of confining ionic liquids (ILs) in developing quasi-solid-state electrolytes (QSSEs) has been proposed, where ILs are dispersed in polymer networks/backbones and/or filler/host pores, forming the so-called confinement, and great research progress and promising research results have been achieved. In this review, the progress and achievement in developing QSSEs using IL-confinement for lithium metal batteries (LMBs), together with advanced characterizations and simulations, were surveyed, summarized, and analyzed, where the influence of specific parameters, such as IL (type, content, etc.), substrate (type, structure, surface properties, etc.), confinement methods, and so on, was discussed. The confinement concept was further compared with the conventional one in other research areas. It indicates that the IL-confinement in QSSEs improves the performance of electrolytes, for example, increasing the ionic conductivity, widening the electrochemical window, and enhancing the cycle performance of the assembled cells, and being different from those in other areas, that is, the IL-confinement concept in the battery area is in a broad extent. Finally, insights into developing QSSEs in LMBs with the confinement strategy were provided to promote the development and application of QSSE LMBs. The progress and achievement of using IL-confinement in developing quasi-solid-state electrolytes for lithium metal batteries are surveyed, summarized, and analyzed, and the influence of specific parameters was discussed, indicating that the IL-confinement improves the performance of electrolytes, and the IL-confinement concept in the battery area is in a broad extent.image
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Development of metal-organic framework materials as solid-state polymer electrolytes for lithium-metal batteries: A review
    Kexin, Wang
    Zhang, Xu
    Hao, Zhongkai
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [22] Physical ionogels with only 2 wt % gelators as efficient quasi-solid-state electrolytes for lithium batteries
    Jiang, Xueao
    Liu, Zhaoen
    Liu, Weijian
    Yu, Da
    Zhang, Jun
    Wang, Xiwen
    Zhang, Yan
    Zhang, Shiguo
    MATTER, 2024, 7 (04) : 1558 - 1574
  • [23] Stable Quasi-Solid-State Aluminum Batteries
    Huang, Zheng
    Song, Wei-Li
    Liu, Yingjun
    Wang, Wei
    Wang, Mingyong
    Ge, Jianbang
    Jiao, Handong
    Jiao, Shuqiang
    ADVANCED MATERIALS, 2022, 34 (08)
  • [24] A Metal-Organic Framework Based Quasi-Solid-State Electrolyte Enabling Continuous Ion Transport for High-Safety and High- Energy-Density Lithium Metal Batteries
    Wu, Zhendi
    Yi, Yikun
    Hai, Feng
    Tian, Xiaolu
    Zheng, Shentuo
    Guo, Jingyu
    Tang, Wei
    Hua, Weibo
    Li, Mingtao
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (18) : 22065 - 22074
  • [25] Electrode structure enabling dendrite inhibition for high cycle stability quasi-solid-state lithium metal batteries
    Wang, Kaiming
    Yu, Ao
    Zhou, Zhiyi
    Shen, Fei
    Li, Manni
    Zhang, Liang
    Guo, Weichang
    Chen, Yifei
    Shi, Le
    Han, Xiaogang
    JOURNAL OF ENERGY CHEMISTRY, 2023, 79 : 232 - 241
  • [26] A synergistic exploitation to produce high-voltage quasi-solid-state lithium metal batteries
    Wu, Junru
    Wang, Xianshu
    Liu, Qi
    Wang, Shuwei
    Zhou, Dong
    Kang, Feiyu
    Shanmukaraj, Devaraj
    Armand, Michel
    Rojo, Teofilo
    Li, Baohua
    Wang, Guoxiu
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [27] Interfacial Evolution of Lithium Dendrites and Their Solid Electrolyte Interphase Shells of Quasi-Solid-State Lithium-Metal Batteries
    Shi, Yang
    Wan, Jing
    Liu, Gui-Xian
    Zuo, Tong-Tong
    Song, Yue-Xian
    Liu, Bing
    Guo, Yu-Guo
    Wen, Rui
    Wan, Li-Jun
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (41) : 18120 - 18125
  • [28] Insights into the nitride-regulated processes at the electrolyte/electrode interface in quasi-solid-state lithium metal batteries
    Wan, Jing
    Chen, Wan-Ping
    Liu, Gui-Xian
    Shi, Yang
    Xin, Sen
    Guo, Yu-Guo
    Wen, Rui
    Wan, Li-Jun
    JOURNAL OF ENERGY CHEMISTRY, 2022, 67 : 780 - 786
  • [29] Integrated lithium metal anode protected by composite solid electrolyte film enables stable quasi-solid-state lithium metal batteries
    Ding, Junfan
    Xu, Rui
    Yan, Chong
    Xiao, Ye
    Liang, Yeru
    Yuan, Hong
    Huang, Jiaqi
    CHINESE CHEMICAL LETTERS, 2020, 31 (09) : 2339 - 2342
  • [30] Strategies to improve the ionic conductivity of quasi-solid-state electrolytes based on metal-organic frameworks
    Chen, Chuan
    Luo, Xiangyi
    NANOTECHNOLOGY, 2024, 35 (36)