Gallium regulated MnO2 toward high performance Zn ion batteries

被引:47
作者
Gao, Lin [1 ]
Hu, Hao [2 ]
Zhang, Chuankun [1 ]
Cao, Minglei [1 ]
机构
[1] Hubei Univ Automot Technol, Sch Math Phys & Optoelect Engn, Hubei Key Lab Energy Storage Power Battery, Shiyan 442002, Peoples R China
[2] Henan Univ Sci & Technol, Collaborat Innovat Ctr Nonferrous Met, Sch Mat Sci & Engn, Henan Prov Key Lab Nonferrous Met Mat Sci & Proc T, Luoyang 471023, Peoples R China
基金
中国国家自然科学基金;
关键词
Zinc ion batteries; Ga dopedMnO2; Electronic cloud polarization; Electronic distribution; DFT calculation; NANOSHEETS; STATE;
D O I
10.1016/j.vacuum.2023.112671
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
alpha-MnO2 with open tunnel structure has received ever-increasing attention because of its superior specific capacity, yet generally undergoes unstable phase transition from the tunnel architecture to layered structure upon Zn2+ insertion as well as the disadvantages of low electrical conductivity and slow Zn2+ diffusion kinetics, thereafter triggering inactive reaction dynamics. In this regard, a gallium (Ga) doped alpha-MnO2 nanowires (denoted as MnO2-Ga) is firstly built in this work to address the abovementioned issue and the MnO2-Ga2 dis-plays enhanced performance with reversible capacity of 205.1 +/- 5 mAh g-1 undergoing 200 cycles at 0.2 A g-1. After repeated 2000 cycles at 1 A g-1, a capacity of 123.7 +/- 5 mAh g-1 can be still obtained. Validated by the theoretical calculation, it is noted that the Ga could effectively regulate the electronic distribution of alpha-MnO2 and narrows the bandgap, prompting the electronic cloud polarization of O and therafter accelerating ion diffusion efficiency. Fundamentally, the Ga intercalation results in the formation of Ga-O bonds. This special building not only guarantees the reversible phase transition and alleviates the Mn dissolution of Ga-MnO2, but also weakens the Zn2+-O2-interactions, leading to elevated cyclic durability and capacity.
引用
收藏
页数:9
相关论文
共 47 条
[1]   Organic-Inorganic-Induced Polymer Intercalation into Layered Composites for Aqueous Zinc-Ion Battery [J].
Bin, Duan ;
Huo, Wangchen ;
Yuan, Yingbo ;
Huang, Jianhang ;
Liu, Yao ;
Zhang, Yuxin ;
Dong, Fan ;
Wang, Yonggang ;
Xia, Yongyao .
CHEM, 2020, 6 (04) :968-984
[2]   Al-Intercalated MnO2 cathode with reversible phase transition for aqueous Zn-Ion batteries [J].
Chen, Cong ;
Shi, Minjie ;
Zhao, Yue ;
Yang, Cheng ;
Zhao, Liping ;
Yan, Chao .
CHEMICAL ENGINEERING JOURNAL, 2021, 422
[3]   Trace Amounts of Triple-Functional Additives Enable Reversible Aqueous Zinc-Ion Batteries from a Comprehensive Perspective [J].
Chen, Ruwei ;
Zhang, Wei ;
Huang, Quanbo ;
Guan, Chaohong ;
Zong, Wei ;
Dai, Yuhang ;
Du, Zijuan ;
Zhang, Zhenyu ;
Li, Jianwei ;
Guo, Fei ;
Gao, Xuan ;
Dong, Haobo ;
Zhu, Jiexin ;
Wang, Xiaohui ;
He, Guanjie .
NANO-MICRO LETTERS, 2023, 15 (01)
[4]   Enhanced visible-light photocatalytic activity of S-scheme Bi3NbO7/Bi2MoO6 heterojunction composite photocatalyst [J].
Cui, Baolong ;
Leng, Wangzhe ;
Wang, Xijun ;
Wang, Yuhao ;
Wang, Jinwen ;
Hu, Yingyue ;
Du, Yi .
VACUUM, 2023, 217
[5]   High performance of Mn-doped VO2 cathode for aqueous zinc-ion batteries: An insight into Zn2+storage mechanism [J].
Deng, Shiyao ;
Li, Hong ;
Chen, Bohong ;
Xu, Zijie ;
Jiang, Yu ;
Li, Chuanhua ;
Xiao, Wei ;
Yan, Xuemin .
CHEMICAL ENGINEERING JOURNAL, 2023, 452
[6]   Advances in Mn-Based Electrode Materials for Aqueous Sodium-Ion Batteries [J].
Ding, Changsheng ;
Chen, Zhang ;
Cao, Chuanxiang ;
Liu, Yu ;
Gao, Yanfeng .
NANO-MICRO LETTERS, 2023, 15 (01)
[7]   Oxygen-Deficient β-MnO2@Graphene Oxide Cathode for High-Rate and Long-Life Aqueous Zinc Ion Batteries [J].
Ding, Shouxiang ;
Zhang, Mingzheng ;
Qin, Runzhi ;
Fang, Jianjun ;
Ren, Hengyu ;
Yi, Haocong ;
Liu, Lele ;
Zhao, Wenguang ;
Li, Yang ;
Yao, Lu ;
Li, Shunning ;
Zhao, Qinghe ;
Pan, Feng .
NANO-MICRO LETTERS, 2021, 13 (01)
[8]   Engineering pseudocapacitive MnMoO4@C microrods for high energy sodium ion hybrid capacitors [J].
Gao, Lin ;
Chen, Guohao ;
Zhang, Lulu ;
Yan, Bo ;
Yang, Xuelin .
ELECTROCHIMICA ACTA, 2021, 379
[9]   Critical method evaluation refutes the Ar 2p signal of implanted Ar for referencing X-ray photoelectron spectra [J].
Greczynski, G. ;
Hultman, L. .
APPLIED SURFACE SCIENCE, 2023, 635
[10]   Referencing to adventitious carbon in X-ray photoelectron spectroscopy: Can differential charging explain C 1s peak shifts? [J].
Greczynski, G. ;
Hultman, L. .
APPLIED SURFACE SCIENCE, 2022, 606