High-Entropy Co-Free O3-Type Layered Oxyfluoride: A Promising Air-Stable Cathode for Sodium-Ion Batteries

被引:72
|
作者
Joshi, Akanksha [1 ]
Chakrabarty, Sankalpita [1 ]
Akella, Sri Harsha [1 ]
Saha, Arka [1 ]
Mukherjee, Ayan [2 ]
Schmerling, Bruria [1 ]
Ejgenberg, Michal [1 ]
Sharma, Rosy [3 ]
Noked, Malachi [1 ]
机构
[1] Bar Ilan Univ, Inst Nanotechnol & Adv Mat BINA, Dept Chem, IL-5290002 Ramat Gan, Israel
[2] Inst Minerals & Mat Technol Bhubaneswar, CSIR, Dept Hydro & Electro Met, Bhubaneswar 751013, Orissa, India
[3] Banaras Hindu Univ, Indian Inst Technol, Dept Chem, Varanasi 221005, India
关键词
air stability; cobalt-free cathodes; cocktail effect; high configuration entropy; sodium-ion batteries; O3-layered structure; METAL OXIDE CATHODES; ELECTRODE MATERIALS; PRUSSIAN BLUE; SUBSTITUTION; PERFORMANCE; EVOLUTION; DESIGN;
D O I
10.1002/adma.202304440
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries have recently emerged as a promising alternative to lithium-based batteries, driven by an ever-growing demand for electricity storage systems. The present workproposes a cobalt-free high-capacity cathode for sodium-ion batteries, synthesized using a high-entropy approach. The high-entropy approach entails mixing more than five elements in a single phase; hence, obtaining the desired properties is a challenge since this involves the interplay between different elements. Here, instead of oxide, oxyfluoride is chosen to suppress oxygen loss during long-term cycling. Supplement to this, lithium is introduced in the composition to obtain high configurational entropy and sodium vacant sites, thus stabilizing the crystal structure, accelerating the kinetics of intercalation/deintercalation, and improving the air stability of the material. With the optimization of the cathode composition, a reversible capacity of 109 mAh g-1 (2-4 V) and 144 mAh g-1 (2-4.3 V) is observed in the first few cycles, along with a significant improvement in stability during prolonged cycling. Furthermore, in situ and ex situ diffraction studies during charging/discharging reveal that the high-entropy strategy successfully suppresses the complex phase transition. The impressive outcomes of the present work strongly motivate the pursuit of the high-entropy approach to develop efficient cathodes for sodium-ion batteries. A high-entropy approach is employed to design an advanced cathode for sodium-ion batteries by combining elements of different traits to overcome the inhibitions of complex phase transition, inferior capacity, sluggish kinetics, and poor air stability.image
引用
收藏
页数:11
相关论文
共 50 条
  • [41] Ti-substituted O3-type layered oxide cathode material with high-voltage stability for sodium-ion batteries
    Tan, Lei
    Wu, Qifeng
    Liu, Zengsheng
    Chen, Qiheng
    Yi, Hongling
    Zhao, Zixiang
    Song, Liubin
    Zhong, Shengkui
    Wu, Xianwen
    Li, Lingjun
    JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2022, 622 : 1037 - 1044
  • [42] Research progress of high-entropy cathode materials for sodium-ion batteries
    Wu, Fan
    Wu, Shaoyang
    Ye, Xin
    Ren, Yurong
    Wei, Peng
    CHINESE CHEMICAL LETTERS, 2025, 36 (04)
  • [43] P2-type layered high-entropy oxides as sodium-ion cathode materials
    Wang, Junbo
    Dreyer, Soeren L.
    Wang, Kai
    Ding, Ziming
    Diemant, Thomas
    Karkera, Guruprakash
    Ma, Yanjiao
    Sarkar, Abhishek
    Zhou, Bei
    Gorbunov, Mikhail, V
    Omar, Ahmad
    Mikhailova, Daria
    Presser, Volker
    Fichtner, Maximilian
    Hahn, Horst
    Brezesinski, Torsten
    Breitung, Ben
    Wang, Qingsong
    MATERIALS FUTURES, 2022, 1 (03):
  • [44] High-Entropy Phase Stabilization Engineering Enables High-Performance Layered Cathode for Sodium-Ion Batteries
    Wang, Bing
    Ma, Jun
    Wang, Kejian
    Wang, Dekai
    Xu, Gaojie
    Wang, Xiaogang
    Hu, Zhiwei
    Pao, Chih-Wen
    Chen, Jeng-Lung
    Du, Li
    Du, Xiaofan
    Cui, Guanglei
    ADVANCED ENERGY MATERIALS, 2024, 14 (23)
  • [45] An air-stable iron/manganese-based phosphate cathode for high performance sodium-ion batteries
    Wang, Ning
    Ma, Jiachen
    Liu, Zhaolu
    Xu, Jie
    Zhao, Deqiang
    Wang, Nan
    Yang, Chen
    Cao, Yongjie
    Lu, Jing
    Zhang, Junxi
    CHEMICAL ENGINEERING JOURNAL, 2022, 433
  • [46] Facilitating the oxygen redox chemistry in O3-type layered oxide cathode material for sodium-ion batteries by Fe substitution
    Xiong, Wei
    Liu, Zhihao
    Cheng, Wenjia
    Zheng, Jiagui
    Zou, Yi
    Chen, Xi
    Liu, Yang
    JOURNAL OF ENERGY CHEMISTRY, 2025, 103 : 59 - 67
  • [47] O3-Type Layered Ni-Rich Oxide: A High-Capacity and Superior-Rate Cathode for Sodium-Ion Batteries
    Yang, Jun
    Tang, Manjing
    Liu, Hao
    Chen, Xueying
    Xu, Zhanwei
    Huang, Jianfeng
    Su, Qingmei
    Xia, Yongyao
    SMALL, 2019, 15 (52)
  • [48] Facilitating the oxygen redox chemistry in O3-type layered oxide cathode material for sodium-ion batteries by Fe substitution
    Wei Xiong
    Zhihao Liu
    Wenji
    Cheng
    Jiagui Zheng
    Yi Zou
    Xi Chen
    Yang Liu
    Journal of Energy Chemistry, 2025, 103 (04) : 59 - 67
  • [49] Molybdenum-Incorporated O3-type Sodium Layered Oxide Cathodes for High-Performance Sodium-Ion Batteries
    Moossa, Buzaina
    Abraham, Jeffin James
    Gayara, Ranasinghe Arachchige Harindi
    Ahmed, Abdul Moiz
    Shahzad, Rana Faisal
    Kahraman, Ramazan
    Al-Qaradawi, Siham
    Rasul, Shahid
    Shakoor, Rana Abdul
    ENERGY TECHNOLOGY, 2023, 11 (12)
  • [50] Surface-Stabilized High-Entropy Layered Oxyfluoride Cathode for Lithium-Ion Batteries
    Zheng, Qinfeng
    Ren, Zhouhong
    Zhang, Yixiao
    Liu, Xi
    Ma, Jun
    Li, Lina
    Chen, Liwei
    JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2023, 14 (24): : 5553 - 5559