High-Entropy Co-Free O3-Type Layered Oxyfluoride: A Promising Air-Stable Cathode for Sodium-Ion Batteries

被引:72
|
作者
Joshi, Akanksha [1 ]
Chakrabarty, Sankalpita [1 ]
Akella, Sri Harsha [1 ]
Saha, Arka [1 ]
Mukherjee, Ayan [2 ]
Schmerling, Bruria [1 ]
Ejgenberg, Michal [1 ]
Sharma, Rosy [3 ]
Noked, Malachi [1 ]
机构
[1] Bar Ilan Univ, Inst Nanotechnol & Adv Mat BINA, Dept Chem, IL-5290002 Ramat Gan, Israel
[2] Inst Minerals & Mat Technol Bhubaneswar, CSIR, Dept Hydro & Electro Met, Bhubaneswar 751013, Orissa, India
[3] Banaras Hindu Univ, Indian Inst Technol, Dept Chem, Varanasi 221005, India
关键词
air stability; cobalt-free cathodes; cocktail effect; high configuration entropy; sodium-ion batteries; O3-layered structure; METAL OXIDE CATHODES; ELECTRODE MATERIALS; PRUSSIAN BLUE; SUBSTITUTION; PERFORMANCE; EVOLUTION; DESIGN;
D O I
10.1002/adma.202304440
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Sodium-ion batteries have recently emerged as a promising alternative to lithium-based batteries, driven by an ever-growing demand for electricity storage systems. The present workproposes a cobalt-free high-capacity cathode for sodium-ion batteries, synthesized using a high-entropy approach. The high-entropy approach entails mixing more than five elements in a single phase; hence, obtaining the desired properties is a challenge since this involves the interplay between different elements. Here, instead of oxide, oxyfluoride is chosen to suppress oxygen loss during long-term cycling. Supplement to this, lithium is introduced in the composition to obtain high configurational entropy and sodium vacant sites, thus stabilizing the crystal structure, accelerating the kinetics of intercalation/deintercalation, and improving the air stability of the material. With the optimization of the cathode composition, a reversible capacity of 109 mAh g-1 (2-4 V) and 144 mAh g-1 (2-4.3 V) is observed in the first few cycles, along with a significant improvement in stability during prolonged cycling. Furthermore, in situ and ex situ diffraction studies during charging/discharging reveal that the high-entropy strategy successfully suppresses the complex phase transition. The impressive outcomes of the present work strongly motivate the pursuit of the high-entropy approach to develop efficient cathodes for sodium-ion batteries. A high-entropy approach is employed to design an advanced cathode for sodium-ion batteries by combining elements of different traits to overcome the inhibitions of complex phase transition, inferior capacity, sluggish kinetics, and poor air stability.image
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Robust interface for O3-type layered cathode towards stable ether-based sodium-ion full batteries
    Zeng, Aoyan
    He, Yongju
    Qin, Mulan
    Hu, Chao
    Huang, Fei
    Qiu, Jilong
    Liang, Shuquan
    Sun, Yanyan
    Fang, Guozhao
    ENERGY STORAGE MATERIALS, 2025, 74
  • [22] Revealing the anionic redox chemistry in O3-type layered oxide cathode for sodium-ion batteries
    Yu, Yang
    Ning, De
    Li, Qingyuan
    Franz, Alexandra
    Zheng, Lirong
    Zhang, Nian
    Ren, Guoxi
    Schumacher, Gerhard
    Liu, Xiangfeng
    ENERGY STORAGE MATERIALS, 2021, 38 (38) : 130 - 140
  • [23] High-energy and long-life O3-type layered cathode material for sodium-ion batteries
    Xinghui Liang
    Xiaosheng Song
    H. Hohyun Sun
    Hun Kim
    Myoung-Chan Kim
    Yang-Kook Sun
    Nature Communications, 16 (1)
  • [24] A high-entropy cathode for sodium-ion batteries: Cu/Zn-doping O3-Type Ni/Fe/Mn layer oxides
    Ren, Yong
    Ge, Qinglei
    Wu, Yijie
    Peng, Qin
    Qian, Jun
    Ding, Xuli
    JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2024, 194
  • [25] Suppressing the chromium disproportionation reaction in O3-type layered cathode materials for high capacity sodium-ion batteries
    Cao, Ming-Hui
    Wang, Yong
    Shadike, Zulipiya
    Yue, Ji-Li
    Hu, Enyuan
    Bak, Seong-Min
    Zhou, Yong-Ning
    Yang, Xiao-Qing
    Fu, Zheng-Wen
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (11) : 5442 - 5448
  • [26] Direction for Commercialization of O3-Type Layered Cathodes for Sodium-Ion Batteries
    Sun, Yang-Kook
    ACS ENERGY LETTERS, 2020, 5 (04): : 1278 - 1280
  • [27] High-voltage stabilized high-entropy oxyfluoride cathode for high-rate sodium-ion batteries
    He, Li
    Feng, Tao
    Wu, Qingqing
    Cao, Yang
    Song, Fangxiang
    RARE METALS, 2025,
  • [28] Air Stable O3-Type Cathode Material with Nanometer Size for Durable Low-Temperature Sodium-Ion Batteries
    Jin, Yan
    Li, Yunbo
    Li, Jianguo
    Zhou, Hongyan
    Chen, Xianghong
    Jiang, Pan
    Fan, Qinghua
    Kuang, Quan
    Dong, Youzhong
    Zhao, Yanming
    ACS APPLIED ENERGY MATERIALS, 2024, 7 (09): : 4121 - 4131
  • [29] Air-Stable and High-Voltage Layered P3-Type Cathode for Sodium-Ion Full Battery
    Zhou, Ya-Nan
    Wang, Peng-Fei
    Zhang, Xu-Dong
    Huang, Lin-Bo
    Wang, Wen-Peng
    Yin, Ya-Xia
    Xu, Sailong
    Guo, Yu-Guo
    ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (27) : 24184 - 24191
  • [30] High-Entropy and Multiphase Cathode Materials for Sodium-Ion Batteries
    Li, Ranran
    Qin, Xuan
    Li, Xiaolei
    Zhu, Jianxun
    Zheng, Li-Rong
    Li, Zhongtao
    Zhou, Weidong
    ADVANCED ENERGY MATERIALS, 2024, 14 (26)