Strategies for enhancing low-frequency performances of triboelectric, electrochemical, piezoelectric, and dielectric elastomer energy harvesting: recent progress and challenges

被引:16
作者
Xiahou, Xingzi [1 ]
Wu, Sijia [1 ]
Guo, Xin [1 ]
Li, Huajian [1 ]
Chen, Chen [1 ]
Xu, Ming [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Mat Sci & Engn, Wuhan 430074, Peoples R China
基金
国家重点研发计划; 中国国家自然科学基金;
关键词
Energy harvesting; Low-frequency; Triboelectric; Piezoelectric; Nanocarbon; WATER-WAVE ENERGY; FRICTION LAYER; WIND ENERGY; CONVERSION EFFICIENCY; POWER OUTPUT; NANOGENERATOR; GENERATOR; PRESSURE; SENSOR; HUMIDITY;
D O I
10.1016/j.scib.2023.06.025
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Mechanical energy harvesting transforms various forms of mechanical energy, including ocean waves, wind, and human motions, into electrical energy, providing a viable solution to address the depletion of fossil fuels and environmental problems. However, one major obstacle for the direct conversion of mechanical energy into electricity is the low frequency of the majority of mechanical energy sources (<= 5 Hz), resulting in low energy conversion efficiency, output power and output current. Over recent years, a numerous innovative technologies have been reported to enable improved energy harvesting utilizing various mechanisms. This review aims to present an in-depth analysis of the research progress in low-frequency energy harvesting technologies that rely on triboelectric, electrochemical, piezoelectric, and dielectric elastomer effects. The discussion commences with an overview of the difficulties associated with low-frequency energy harvesting. The critical aspects that impact the low-frequency performance of mechanical energy harvesters, including working mechanisms, environmental factors, and device compositions, are elucidated, while the advantages and disadvantages of different mechanisms in low-frequency operation are compared and summarized. Moreover, this review expounds on the strategies that can improve the low-frequency energy harvesting performance through the modulations of material compositions, structures, and devices. It also showcases the applications of mechanical energy harvesters in energy harvesting via waves, wind, and human motions. Finally, the recommended choices of mechanical energy harvesters with different mechanisms for various applications are offered, which can assist in the design and fabrication process. (c) 2023 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.
引用
收藏
页码:1687 / 1714
页数:28
相关论文
共 50 条
  • [31] Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism
    HAN MengDi
    ZHANG XiaoSheng
    LIU Wen
    SUN XuMing
    PENG XuHua
    ZHANG HaiXia
    Science China(Technological Sciences), 2013, (08) : 1835 - 1841
  • [32] Low-frequency wide-band hybrid energy harvester based on piezoelectric and triboelectric mechanism
    Han MengDi
    Zhang XiaoSheng
    Liu Wen
    Sun XuMing
    Peng XuHua
    Zhang HaiXia
    SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2013, 56 (08) : 1835 - 1841
  • [33] Constant-current water-tube triboelectric energy harvester for low-frequency rotational energy harvesting
    Hong, Hongxin
    Hu, Yiwen
    Liu, Cansen
    Wang, Chenyu
    Chen, Sixian
    Zeng, Zhiyu
    Yan, Cangshu
    Wu, Hao
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [34] CMOS Compatible Low-Frequency Aluminium Nitride MEMS Piezoelectric Energy Harvesting device
    Jackson, N.
    O'Keeffe, R.
    O'Neill, M.
    Waldron, F.
    Mathewson, A.
    SMART SENSORS, ACTUATORS, AND MEMS VI, 2013, 8763
  • [35] A Low-Frequency MEMS Piezoelectric Energy Harvesting System Based on Frequency Up-Conversion Mechanism
    Huang, Manjuan
    Hou, Cheng
    Li, Yunfei
    Liu, Huicong
    Wang, Fengxia
    Chen, Tao
    Yang, Zhan
    Tang, Gang
    Sun, Lining
    MICROMACHINES, 2019, 10 (10)
  • [36] Improved energy harvesting from low-frequency small vibrations through a monostable piezoelectric energy harvester
    Fan, Kangqi
    Tan, Qinxue
    Liu, Haiyan
    Zhang, Yiwei
    Cai, Meiling
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2019, 117 : 594 - 608
  • [37] Stacked pendulum-structured triboelectric nanogenerators for effectively harvesting low-frequency water wave energy
    Zhong, Wei
    Xu, Liang
    Wang, Haiming
    Li, Ding
    Wang, Zhong Lin
    NANO ENERGY, 2019, 66
  • [38] Vortex-induced vibration triboelectric nanogenerator for energy harvesting from low-frequency water flow
    Li, Xiaowei
    Zhou, Yuan
    Li, Zhongjie
    Guo, Hengyu
    Gong, Ying
    Zhang, Dan
    Zhang, Di
    Zhang, Qin
    Wang, Biao
    Peng, Yan
    ENERGY CONVERSION AND MANAGEMENT, 2023, 292
  • [39] Modeling of a Rope-Driven Piezoelectric Vibration Energy Harvester for Low-Frequency and Wideband Energy Harvesting
    Zhang, Jinhui
    Lin, Maoyu
    Zhou, Wei
    Luo, Tao
    Qin, Lifeng
    MICROMACHINES, 2021, 12 (03)
  • [40] A spring-assisted hybrid triboelectric-electromagnetic nanogenerator for harvesting low-frequency vibration energy and creating a self-powered security system
    Wang, Weichao
    Xu, Jiancheng
    Zheng, Haiwu
    Chen, Fangqi
    Jenkins, Kory
    Wu, Yonghui
    Wang, Heyi
    Zhang, Weifeng
    Yang, Rusen
    NANOSCALE, 2018, 10 (30) : 14747 - 14754