Multi-objective multi-agent deep reinforcement learning to reduce bus bunching for multiline services with a shared corridor

被引:9
|
作者
Wang, Jiawei [1 ]
Sun, Lijun [1 ,2 ]
机构
[1] McGill Univ, Dept Civil Engn, Montreal, PQ H3A 0C3, Canada
[2] 492-817 Sherbrooke St West,Macdonald Engn Bldg, Montreal, PQ H3A 0C3, Canada
基金
加拿大创新基金会; 加拿大魁北克医学研究基金会;
关键词
Bus bunching; Multi-line bus control; Multi-agent system; Deep reinforcement learning; Multi-objective; STRATEGIES;
D O I
10.1016/j.trc.2023.104309
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
Bus bunching is a long-standing problem in transit operation and ruining the regularity of transit service. In a typical urban transit network setting of multiple lines with a shared corridor, bus bunching becomes more frequent as there is more uncertainty inside the shared corridor. While multi-agent reinforcement learning (MARL) has been a promising scheme for learning efficient control policy in a multi-agent system, few studies have explored its applicability in multi-line transit control scenarios. In this study, we focus on a basic transit network where there are two bus lines with a shared corridor. An efficient MARL framework is proposed to learn multi-line bus holding control to avoid bus bunching. Specifically, we design observation and reward functions that incorporate multi-line information. In addition, a preference weights producer is introduced to update the objective weights towards a good trajectory evaluation during daily transit operation. In this way, we handle the multi-objective issue in multi-line control. In experimental studies, we validate the superiority of the method in real-world bus lines. Results show that the state and reward augmented with multi-line information benefit MARL in multi-line bus control. Besides, by updating preference weights towards less passenger waiting time, the regularity of transit service is further improved.
引用
收藏
页数:16
相关论文
共 50 条
  • [41] Real-Time Bus Holding Control on a Transit Corridor Based on Multi-Agent Reinforcement Learning
    Chen, Weiya
    Zhou, Kunlin
    Chen, Chunxiao
    2016 IEEE 19TH INTERNATIONAL CONFERENCE ON INTELLIGENT TRANSPORTATION SYSTEMS (ITSC), 2016, : 100 - 106
  • [42] Track Learning Agent Using Multi-objective Reinforcement Learning
    Shah, Rushabh
    Ruparel, Vidhi
    Prabhu, Mukul
    D'mello, Lynette
    FOURTH CONGRESS ON INTELLIGENT SYSTEMS, VOL 1, CIS 2023, 2024, 868 : 27 - 40
  • [43] Multi-objective cooperative transportation for reconfigurable robot using isomorphic mapping multi-agent reinforcement learning
    Zhao, Ruqing
    Li, Fusheng
    Lu, Xin
    Lyu, Shubin
    MECHATRONICS, 2024, 101
  • [44] Resource Allocation for Metaverse Experience Optimization: A Multi-Objective Multi-Agent Evolutionary Reinforcement Learning Approach
    Feng, Lei
    Jiang, Xiaoyi
    Sun, Yao
    Niyato, Dusit
    Zhou, Yu
    Gu, Shiyi
    Yang, Zhixiang
    Yang, Yang
    Zhou, Fanqin
    IEEE TRANSACTIONS ON MOBILE COMPUTING, 2025, 24 (04) : 3473 - 3488
  • [45] Urban Driving with Multi-Objective Deep Reinforcement Learning
    Li, Changjian
    Czarnecki, Krzysztof
    AAMAS '19: PROCEEDINGS OF THE 18TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS, 2019, : 359 - 367
  • [46] Multi-objective multicast optimization with deep reinforcement learning
    Li, Xiaole
    Tian, Jinwei
    Wang, Cuiping
    Jiang, Yinghui
    Wang, Xing
    Wang, Jiuru
    CLUSTER COMPUTING-THE JOURNAL OF NETWORKS SOFTWARE TOOLS AND APPLICATIONS, 2025, 28 (04):
  • [47] Dynamic Weights in Multi-Objective Deep Reinforcement Learning
    Abels, Axel
    Roijers, Diederik M.
    Lenaerts, Tom
    Nowe, Ann
    Steckelmacher, Denis
    INTERNATIONAL CONFERENCE ON MACHINE LEARNING, VOL 97, 2019, 97
  • [48] An Algorithm for Multi-Objective Multi-Agent Optimization
    Blondin, Maude J.
    Hale, Matthew
    2020 AMERICAN CONTROL CONFERENCE (ACC), 2020, : 1489 - 1494
  • [49] Multi-Agent Deep Reinforcement Learning for Multi-Object Tracker
    Jiang, Mingxin
    Hai, Tao
    Pan, Zhigeng
    Wang, Haiyan
    Jia, Yinjie
    Deng, Chao
    IEEE ACCESS, 2019, 7 : 32400 - 32407
  • [50] Multi-objective safe reinforcement learning: the relationship between multi-objective reinforcement learning and safe reinforcement learning
    Horie, Naoto
    Matsui, Tohgoroh
    Moriyama, Koichi
    Mutoh, Atsuko
    Inuzuka, Nobuhiro
    ARTIFICIAL LIFE AND ROBOTICS, 2019, 24 (03) : 352 - 359