ASCFL: Accurate and Speedy Semi-Supervised Clustering Federated Learning

被引:5
|
作者
He, Jingyi [1 ]
Gong, Biyao [1 ]
Yang, Jiadi [1 ]
Wang, Hai [1 ]
Xu, Pengfei [1 ]
Xing, Tianzhang [1 ,2 ]
机构
[1] Northwest Univ, Sch Informat Sci & Technol, Xian 710100, Peoples R China
[2] Northwest Univ, Internet Things Res Ctr, Xian 710100, Peoples R China
来源
TSINGHUA SCIENCE AND TECHNOLOGY | 2023年 / 28卷 / 05期
基金
中国国家自然科学基金;
关键词
federated learning; clustered federated learning; non-Independent Identically Distribution (non-IID) data; similarity indicator; client selection; semi-supervised learning;
D O I
10.26599/TST.2022.9010057
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The influence of non-Independent Identically Distribution (non-IID) data on Federated Learning (FL) has been a serious concern. Clustered Federated Learning (CFL) is an emerging approach for reducing the impact of non-IID data, which employs the client similarity calculated by relevant metrics for clustering. Unfortunately, the existing CFL methods only pursue a single accuracy improvement, but ignore the convergence rate. Additionlly, the designed client selection strategy will affect the clustering results. Finally, traditional semi-supervised learning changes the distribution of data on clients, resulting in higher local costs and undesirable performance. In this paper, we propose a novel CFL method named ASCFL, which selects clients to participate in training and can dynamically adjust the balance between accuracy and convergence speed with datasets consisting of labeled and unlabeled data. To deal with unlabeled data, the prediction labels strategy predicts labels by encoders. The client selection strategy is to improve accuracy and reduce overhead by selecting clients with higher losses participating in the current round. What is more, the similarity-based clustering strategy uses a new indicator to measure the similarity between clients. Experimental results show that ASCFL has certain advantages in model accuracy and convergence speed over the three state-of-the-art methods with two popular datasets.
引用
收藏
页码:823 / 837
页数:15
相关论文
共 50 条
  • [31] FedTriNet: A Pseudo Labeling Method with Three Players for Federated Semi-supervised Learning
    Che, Liwei
    Long, Zewei
    Wang, Jiaqi
    Wang, Yaqing
    Xiao, Houping
    Ma, Fenglong
    2021 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2021, : 715 - 724
  • [32] Federated semi-supervised learning with tolerant guidance and powerful classifier in edge scenarios
    Wang, Jinbo
    Pei, Xikai
    Wang, Ruijin
    Zhang, Fengli
    Chen, Ting
    INFORMATION SCIENCES, 2024, 662
  • [33] Prediction Based Semi-Supervised Online Personalized Federated Learning for Indoor Localization
    Wu, Zheshun
    Wu, Xiaoping
    Long, Yunliang
    IEEE SENSORS JOURNAL, 2022, 22 (11) : 10640 - 10654
  • [34] Federated Semi-Supervised Learning Through a Combination of Self and Cross Model Ensembling
    Wen, Tingjie
    Zhao, Shengjie
    Zhang, Rongqing
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [35] Semi-Supervised Federated Learning for Travel Mode Identification From GPS Trajectories
    Zhu, Yuanshao
    Liu, Yi
    Yu, James J. Q.
    Yuan, Xingliang
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (03) : 2380 - 2391
  • [36] Clustering Network Traffic Using Semi-Supervised Learning
    Krajewska, Antonina
    Niewiadomska-Szynkiewicz, Ewa
    ELECTRONICS, 2024, 13 (14)
  • [37] SEMI-SUPERVISED SPECTRAL CLUSTERING
    Mai, Xiaoyi
    Couillet, Romain
    2018 CONFERENCE RECORD OF 52ND ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS, AND COMPUTERS, 2018, : 2012 - 2016
  • [38] Semi-supervised and personalized federated activity recognition based on active learning and label propagation
    Presotto R.
    Civitarese G.
    Bettini C.
    Personal and Ubiquitous Computing, 2022, 26 (05) : 1281 - 1298
  • [39] Personalized Federated Human Activity Recognition through Semi-supervised Learning and Enhanced Representation
    Gao, Lulu
    Konomi, Shin'ichi
    ADJUNCT PROCEEDINGS OF THE 2023 ACM INTERNATIONAL JOINT CONFERENCE ON PERVASIVE AND UBIQUITOUS COMPUTING & THE 2023 ACM INTERNATIONAL SYMPOSIUM ON WEARABLE COMPUTING, UBICOMP/ISWC 2023 ADJUNCT, 2023, : 463 - 468
  • [40] Privacy-preserving Speech Emotion Recognition through Semi-Supervised Federated Learning
    Tsouvalas, Vasileios
    Ozcelebi, Tanir
    Meratnia, Nirvana
    2022 IEEE INTERNATIONAL CONFERENCE ON PERVASIVE COMPUTING AND COMMUNICATIONS WORKSHOPS AND OTHER AFFILIATED EVENTS (PERCOM WORKSHOPS), 2022,