Detection of DDoS attack in IoT traffic using ensemble machine learning techniques

被引:5
|
作者
Pandey, Nimisha [1 ]
Mishra, Pramod Kumar [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India
关键词
DDoS attacks; random forest; gradient boosting; Pearson correlation coefficient; extra trees classifier; IoT; IoT security; TECHNOLOGIES; MITIGATION; HOME;
D O I
10.3934/nhm.2023061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A denial-of-service (DoS) attack aims to exhaust the resources of the victim by sending attack packets and ultimately stop the legitimate packets by various techniques. The paper discusses the consequences of distributed denial-of-service (DDoS) attacks in various application areas of Internet of Things (IoT). In this paper, we have analyzed the performance of machine learning(ML)-based classifiers including bagging and boosting techniques for the binary classification of attack traffic. For the analysis, we have used the benchmark CICDDoS2019 dataset which deals with DDoS attacks based on User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) in order to study new kinds of attacks. Since these protocols are widely used for communication in IoT networks, this data has been used for studying DDoS attacks in the IoT domain. Since the data is highly unbalanced, class balancing is done using an ensemble sampling approach comprising random under-sampler and ADAptive SYNthetic (ADASYN) oversampling technique. Feature selection is achieved using two methods, i.e., (a) Pearson correlation coefficient and (b) Extra Tree classifier. Further, performance is evaluated for ML classifiers viz. Random Forest (RF), Nai & BULL;ve Bayes (NB), support vector machine (SVM), AdaBoost, eXtreme Gradient Boosting (XGBoost) and Gradient Boosting (GB) algorithms. It is found that RF has given the best performance with the least training and prediction time. Further, it is found that feature selection using extra trees classifier is more efficient as compared to the Pearson correlation coefficient method in terms of total time required in training and prediction for most classifiers. It is found that RF has given best performance with least time along with feature selection using Pearson correlation coefficient in attack detection.
引用
收藏
页码:1393 / 1408
页数:16
相关论文
共 50 条
  • [21] Machine Learning Based DDoS Attack Detection
    Ajeetha, G.
    Priya, Madhu G.
    2019 INNOVATIONS IN POWER AND ADVANCED COMPUTING TECHNOLOGIES (I-PACT), 2019,
  • [22] Machine learning-based DDOS attack detection and mitigation in SDNs for IoT environments
    Kavitha, D.
    Ramalakshmi, R.
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2024, 361 (17):
  • [23] Botnet Attack Detection in IoT Using Machine Learning
    Alissa, Khalid
    Alyas, Tahir
    Zafar, Kashif
    Abbas, Qaiser
    Tabassum, Nadia
    Sakib, Shadman
    COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE, 2022, 2022
  • [24] DDoS Attack Detection in IoT-Based Networks Using Machine Learning Models: A Survey and Research Directions
    Alahmadi, Amal A.
    Aljabri, Malak
    Alhaidari, Fahd
    Alharthi, Danyah J.
    Rayani, Ghadi E.
    Marghalani, Leena A.
    Alotaibi, Ohoud B.
    Bajandouh, Shurooq A.
    ELECTRONICS, 2023, 12 (14)
  • [25] Performance evaluation of Botnet DDoS attack detection using machine learning
    Tuan, Tong Anh
    Long, Hoang Viet
    Son, Le Hoang
    Kumar, Raghvendra
    Priyadarshini, Ishaani
    Son, Nguyen Thi Kim
    EVOLUTIONARY INTELLIGENCE, 2020, 13 (02) : 283 - 294
  • [26] Performance evaluation of Botnet DDoS attack detection using machine learning
    Tong Anh Tuan
    Hoang Viet Long
    Le Hoang Son
    Raghvendra Kumar
    Ishaani Priyadarshini
    Nguyen Thi Kim Son
    Evolutionary Intelligence, 2020, 13 : 283 - 294
  • [27] Identification of Attack Traffic Using Machine Learning in Smart IoT Networks
    Shafiq, Muhammad
    Nazir, Shah
    Yu, Xiangzhan
    SECURITY AND COMMUNICATION NETWORKS, 2022, 2022
  • [28] Detection of DDoS Attack Using SDN in IoT: A Survey
    Pajila, P. J. Beslin
    Julie, E. Golden
    INTELLIGENT COMMUNICATION TECHNOLOGIES AND VIRTUAL MOBILE NETWORKS, ICICV 2019, 2020, 33 : 438 - 452
  • [29] Enhancing DDoS attack detection in IoT using PCA
    Dash, Sanjit Kumar
    Dash, Sweta
    Mahapatra, Satyajit
    Mohanty, Sachi Nandan
    Khan, M. Ijaz
    Medani, Mohamed
    Abdullaev, Sherzod
    Gupta, Manish
    EGYPTIAN INFORMATICS JOURNAL, 2024, 25
  • [30] Detecting malicious IoT traffic using Machine Learning techniques
    Jayaraman, Bhuvana
    Thai, Mirnalinee T. H. A. N. G. A. N. A. D. A. R. T. H. A. N. G. A.
    Anand, Anirudh
    Nadar, Sri Sivasubramaniya
    ROMANIAN JOURNAL OF INFORMATION TECHNOLOGY AND AUTOMATIC CONTROL-REVISTA ROMANA DE INFORMATICA SI AUTOMATICA, 2023, 33 (04): : 47 - 58