Detection of DDoS attack in IoT traffic using ensemble machine learning techniques

被引:5
|
作者
Pandey, Nimisha [1 ]
Mishra, Pramod Kumar [1 ]
机构
[1] Banaras Hindu Univ, Inst Sci, Dept Comp Sci, Varanasi 221005, Uttar Pradesh, India
关键词
DDoS attacks; random forest; gradient boosting; Pearson correlation coefficient; extra trees classifier; IoT; IoT security; TECHNOLOGIES; MITIGATION; HOME;
D O I
10.3934/nhm.2023061
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A denial-of-service (DoS) attack aims to exhaust the resources of the victim by sending attack packets and ultimately stop the legitimate packets by various techniques. The paper discusses the consequences of distributed denial-of-service (DDoS) attacks in various application areas of Internet of Things (IoT). In this paper, we have analyzed the performance of machine learning(ML)-based classifiers including bagging and boosting techniques for the binary classification of attack traffic. For the analysis, we have used the benchmark CICDDoS2019 dataset which deals with DDoS attacks based on User Datagram Protocol (UDP) and Transmission Control Protocol (TCP) in order to study new kinds of attacks. Since these protocols are widely used for communication in IoT networks, this data has been used for studying DDoS attacks in the IoT domain. Since the data is highly unbalanced, class balancing is done using an ensemble sampling approach comprising random under-sampler and ADAptive SYNthetic (ADASYN) oversampling technique. Feature selection is achieved using two methods, i.e., (a) Pearson correlation coefficient and (b) Extra Tree classifier. Further, performance is evaluated for ML classifiers viz. Random Forest (RF), Nai & BULL;ve Bayes (NB), support vector machine (SVM), AdaBoost, eXtreme Gradient Boosting (XGBoost) and Gradient Boosting (GB) algorithms. It is found that RF has given the best performance with the least training and prediction time. Further, it is found that feature selection using extra trees classifier is more efficient as compared to the Pearson correlation coefficient method in terms of total time required in training and prediction for most classifiers. It is found that RF has given best performance with least time along with feature selection using Pearson correlation coefficient in attack detection.
引用
收藏
页码:1393 / 1408
页数:16
相关论文
共 50 条
  • [1] DDoS Attack Detection on IoT Devices Using Machine Learning Techniques
    Kumar, Sunil
    Sahu, Rohit Kumar
    Rudra, Bhawana
    INTELLIGENT SYSTEMS DESIGN AND APPLICATIONS, ISDA 2021, 2022, 418 : 787 - 794
  • [2] Detection of DDoS Attack in IoT Using Machine Learning
    Kumar, Naveen
    Aleem, Abdul
    Kumar, Sachin
    ADVANCED NETWORK TECHNOLOGIES AND INTELLIGENT COMPUTING, ANTIC 2021, 2022, 1534 : 190 - 199
  • [3] Classification of IoT based DDoS Attack using Machine Learning Techniques
    Fasih, Muhammad Ashfaq
    Maryam, Malik
    Urooj, Fatima
    Shahzad, Muhammad Khuram
    PROCEEDINGS OF THE 2022 16TH INTERNATIONAL CONFERENCE ON UBIQUITOUS INFORMATION MANAGEMENT AND COMMUNICATION (IMCOM 2022), 2022,
  • [4] EFFICIENT DDoS ATTACK DETECTION USING MACHINE LEARNING TECHNIQUES
    Nazarudeen, Fathima
    Sundar, Sumod
    2022 IEEE INTERNATIONAL POWER AND RENEWABLE ENERGY CONFERENCE, IPRECON, 2022,
  • [5] A Lightweight Model for DDoS Attack Detection Using Machine Learning Techniques
    Sadhwani, Sapna
    Manibalan, Baranidharan
    Muthalagu, Raja
    Pawar, Pranav
    APPLIED SCIENCES-BASEL, 2023, 13 (17):
  • [6] DDoS Attack Detection Using Ensemble Machine Learning Models with RFE Algorithm
    Visetbunditkun, Tanut
    Srichavengsup, Warakorn
    2022 7TH INTERNATIONAL CONFERENCE ON BUSINESS AND INDUSTRIAL RESEARCH (ICBIR2022), 2022, : 269 - 273
  • [7] Deep Ensemble Learning With Pruning for DDoS Attack Detection in IoT Networks
    Saiyedand, Makhduma F.
    Al-Anbagi, Irfan
    IEEE Transactions on Machine Learning in Communications and Networking, 2024, 2 : 596 - 616
  • [8] IoT DDoS Traffic Detection Using Adaptive Heuristics Assisted With Machine Learning
    Al Rahbani, Rani
    Khalife, Jawad
    2022 10TH INTERNATIONAL SYMPOSIUM ON DIGITAL FORENSICS AND SECURITY (ISDFS), 2022,
  • [9] DDOS Attack Identification using Machine Learning Techniques
    Peneti, Subhashini
    Hemalatha, E.
    2021 INTERNATIONAL CONFERENCE ON COMPUTER COMMUNICATION AND INFORMATICS (ICCCI), 2021,
  • [10] DDoS Attack Detection using Machine Learning Techniques in Cloud Computing Environments
    Zekri, Marwane
    El Kafhali, Said
    Aboutabit, Noureddine
    Saadi, Youssef
    PROCEEDINGS OF 2017 3RD INTERNATIONAL CONFERENCE OF CLOUD COMPUTING TECHNOLOGIES AND APPLICATIONS (CLOUDTECH), 2017, : 236 - 242