A reinforcement learning model for AI-based decision support in skin cancer

被引:47
作者
Barata, Catarina [1 ]
Rotemberg, Veronica [2 ]
Codella, Noel C. F. [3 ]
Tschandl, Philipp [4 ]
Rinner, Christoph [5 ]
Akay, Bengu Nisa [6 ]
Apalla, Zoe [7 ]
Argenziano, Giuseppe [8 ]
Halpern, Allan [2 ]
Lallas, Aimilios [7 ]
Longo, Caterina [9 ,10 ]
Malvehy, Josep [11 ,12 ]
Puig, Susana [11 ,12 ]
Rosendahl, Cliff [13 ]
Soyer, H. Peter [14 ]
Zalaudek, Iris [15 ]
Kittler, Harald [4 ]
机构
[1] Inst Syst & Robot, Inst Super Tecn, LARSyS, Lisbon, Portugal
[2] Mem Sloan Kettering Canc Ctr, Dermatol Serv, New York, NY USA
[3] Microsoft, Redmond, WA USA
[4] Med Univ Vienna, Dept Dermatol, Vienna, Austria
[5] Med Univ Vienna, Ctr Med Stat Informat & Intelligent Syst CeMSIIS, Vienna, Austria
[6] Ankara Univ, Dept Dermatol, Sch Med, Ankara, Turkiye
[7] Aristotle Univ Thessaloniki, Dept Dermatol 2, Thessaloniki, Greece
[8] Univ Campania, Dermatol Unit, Naples, Italy
[9] Univ Modena & Reggio Emilia, Dermatol Unit, Modena, Italy
[10] Azienda Unita Sanit Locale IRCCS Reggio Emilia, Ctr Oncol ad Alta Tecnol Diagnost Dermatol, Reggio Emilia, Italy
[11] Univ Barcelona, Hosp Clin Barcelona, Dermatol Dept, Melanoma Unit,IDIBAPS, Barcelona, Spain
[12] Inst Salud Carlos III, Ctr Invest Biomed Red Enfermedades Raras CIBER ER, Barcelona, Spain
[13] Univ Queensland, Med Sch, Gen Practice Clin Unit, Brisbane, Qld, Australia
[14] Univ Queensland, Frazer Inst, Dermatol Res Ctr, Brisbane, Qld, Australia
[15] Med Univ Trieste, Dept Dermatol, Trieste, Italy
关键词
CLASSIFICATION;
D O I
10.1038/s41591-023-02475-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
We investigated whether human preferences hold the potential to improve diagnostic artificial intelligence (AI)-based decision support using skin cancer diagnosis as a use case. We utilized nonuniform rewards and penalties based on expert-generated tables, balancing the benefits and harms of various diagnostic errors, which were applied using reinforcement learning. Compared with supervised learning, the reinforcement learning model improved the sensitivity for melanoma from 61.4% to 79.5% (95% confidence interval (CI): 73.5-85.6%) and for basal cell carcinoma from 79.4% to 87.1% (95% CI: 80.3-93.9%). AI overconfidence was also reduced while simultaneously maintaining accuracy. Reinforcement learning increased the rate of correct diagnoses made by dermatologists by 12.0% (95% CI: 8.8-15.1%) and improved the rate of optimal management decisions from 57.4% to 65.3% (95% CI: 61.7-68.9%). We further demonstrated that the reward-adjusted reinforcement learning model and a threshold-based model outperformed naive supervised learning in various clinical scenarios. Our findings suggest the potential for incorporating human preferences into image-based diagnostic algorithms. A reinforcement learning model developed to adapt artificial intelligence (AI) predictions to human preferences showed better sensitivity for skin cancer diagnoses and improved management decisions compared to a supervised learning model.
引用
收藏
页码:1941 / +
页数:15
相关论文
共 18 条
[1]   Clinical decisions using AI must consider patient values [J].
Birch, Jonathan ;
Creel, Kathleen A. ;
Jha, Abhinav K. ;
Plutynski, Anya .
NATURE MEDICINE, 2022, 28 (02) :229-232
[2]   A simple plug-in bagging ensemble based on threshold-moving for classifying binary and multiclass imbalanced data [J].
Collell, Guillem ;
Prelec, Drazen ;
Patil, Kaustubh R. .
NEUROCOMPUTING, 2018, 275 :330-340
[3]   Validation of artificial intelligence prediction models for skin cancer diagnosis using dermoscopy images: the 2019 International Skin Imaging Collaboration Grand Challenge [J].
Combalia, Marc ;
Codella, Noel ;
Rotemberg, Veronica ;
Carrera, Cristina ;
Dusza, Stephen ;
Gutman, David ;
Helba, Brian ;
Kittler, Harald ;
Kurtansky, Nicholas R. ;
Liopyris, Konstantinos ;
Marchetti, Michael A. ;
Podlipnik, Sebastian ;
Puig, Susana ;
Rinner, Christoph ;
Tschandl, Philipp ;
Weber, Jochen ;
Halpern, Allan ;
Malvehy, Josep .
LANCET DIGITAL HEALTH, 2022, 4 (05) :E330-E339
[4]   Dermatologist-level classification of skin cancer with deep neural networks [J].
Esteva, Andre ;
Kuprel, Brett ;
Novoa, Roberto A. ;
Ko, Justin ;
Swetter, Susan M. ;
Blau, Helen M. ;
Thrun, Sebastian .
NATURE, 2017, 542 (7639) :115-+
[5]   Individualized Medical Decision Making Necessary, Achievable, but Not Yet Attainable [J].
Fraenkel, Liana ;
Fried, Terri R. .
ARCHIVES OF INTERNAL MEDICINE, 2010, 170 (06) :566-569
[6]  
Haenssle H A, 2019, Ann Oncol, V30, p130e, DOI 10.1093/annonc/mdy520
[7]   Original Research Skin cancer classification via convolutional neural networks: systematic review of studies involving human experts [J].
Haggenmueller, Sarah ;
Maron, Roman C. ;
Hekler, Achim ;
Utikal, Jochen S. ;
Barata, Catarina ;
Barnhill, Raymond L. ;
Beltraminelli, Helmut ;
Berking, Carola ;
Betz-Stablein, Brigid ;
Blum, Andreas ;
Braun, Stephan A. ;
Carr, Richard ;
Combalia, Marc ;
Fernandez-Figueras, Maria-Teresa ;
Ferrara, Gerardo ;
Fraitag, Sylvie ;
French, Lars E. ;
Gellrich, Frank F. ;
Ghoreschi, Kamran ;
Goebeler, Matthias ;
Guitera, Pascale ;
Haenssle, Holger A. ;
Haferkamp, Sebastian ;
Heinzerling, Lucie ;
V. Heppt, Markus ;
Hilke, Franz J. ;
Hobelsberger, Sarah ;
Krahl, Dieter ;
Kutzner, Heinz ;
Lallas, Aimilios ;
Liopyris, Konstantinos ;
Llamas-Velasco, Mar ;
Malvehy, Josep ;
Meier, Friedegund ;
Mueller, Cornelia S. L. ;
Navarini, Alexander A. ;
Navarrete-Dechent, Cristian ;
Perasole, Antonio ;
Poch, Gabriela ;
Podlipnik, Sebastian ;
Requena, Luis ;
Rotemberg, Veronica M. ;
Saggini, Andrea ;
Sangueza, Omar P. ;
Santonja, Carlos ;
Schadendorf, Dirk ;
Schilling, Bastian ;
Schlaak, Max ;
Schlager, Justin G. ;
Sergon, Mildred .
EUROPEAN JOURNAL OF CANCER, 2021, 156 :202-216
[8]  
Harald K., 2023, HARVARD DATAVERSE, DOI [10.7910/DVN/PWQMQ7, DOI 10.7910/DVN/PWQMQ7]
[9]   International evaluation of an AI system for breast cancer screening [J].
McKinney, Scott Mayer ;
Sieniek, Marcin ;
Godbole, Varun ;
Godwin, Jonathan ;
Antropova, Natasha ;
Ashrafian, Hutan ;
Back, Trevor ;
Chesus, Mary ;
Corrado, Greg C. ;
Darzi, Ara ;
Etemadi, Mozziyar ;
Garcia-Vicente, Florencia ;
Gilbert, Fiona J. ;
Halling-Brown, Mark ;
Hassabis, Demis ;
Jansen, Sunny ;
Karthikesalingam, Alan ;
Kelly, Christopher J. ;
King, Dominic ;
Ledsam, Joseph R. ;
Melnick, David ;
Mostofi, Hormuz ;
Peng, Lily ;
Reicher, Joshua Jay ;
Romera-Paredes, Bernardino ;
Sidebottom, Richard ;
Suleyman, Mustafa ;
Tse, Daniel ;
Young, Kenneth C. ;
De Fauw, Jeffrey ;
Shetty, Shravya .
NATURE, 2020, 577 (7788) :89-+
[10]   Cancer treatment and survivorship statistics, 2019 [J].
Miller, Kimberly D. ;
Nogueira, Leticia ;
Mariotto, Angela B. ;
Rowland, Julia H. ;
Yabroff, K. Robin ;
Alfano, Catherine M. ;
Jemal, Ahmedin ;
Kramer, Joan L. ;
Siegel, Rebecca L. .
CA-A CANCER JOURNAL FOR CLINICIANS, 2019, 69 (05) :363-385