PEO/STARCH-NANOCRYSTALS BASED SOLID POLYMER ELECTROLYTE MEMBRANES FOR MAGNESIUM ION CONDUCTING APPLICATIONS

被引:0
|
作者
Marinov, Yordan G. [1 ]
Koduru, Hari K. [1 ]
Exner, Ginka K. [2 ]
Ivanov, George R. [3 ]
Scaramuzza, Nicola [4 ]
机构
[1] Bulgarian Acad Sci, Georgi Nadjakov Inst Solid State Phys, 72 Tsarigradsko Shosse, Sofia 1784, Bulgaria
[2] Plovdiv Univ Paisii Hilendarski, Fac Phys & Technol, 24 Tsar Asen St, Plovdiv 4000, Bulgaria
[3] Univ Architecture Civil Engn & Geodesy UACEG, Univ Lab Nanosci & Nanotechnol, Dept Phys, 1 Hristo Smirnenski Blvd, Sofia 1164, Bulgaria
[4] Univ Calabria, Dipartimento Fis, Via P Bucci,Cubo 33B, IT-87036 Arcavacata Di Rende, CS, Italy
来源
关键词
solid polymer electrolytes; nanocomposites; bioorganic filler; starch nanocrystals (SNCs); electrical impedance spectroscopy; magnesium ionic conductivity; microstructural properties; STATE; CONFORMATION; BATTERY;
D O I
10.7546/CRABS.2023.05.04
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
PEO/SNCs based nanocomposite electrolyte membrane complexed with MgBr2 salt (15 wt.%) was fabricated following conventional solution casting technique. The effect of incorporation of salt ions on microstructural properties of host matrix of PEO/SNCs were investigated by means of XRD, FTIR, DSC studies. The modifications in the nature of diffraction peaks and vibrational modes of nanocomposites revealed the formation of strong hydrogen bonding and cross links between SNCs and salt ions. A decrease of melting and glass transition temperatures of host matrix was observed as a result of salt doping. The complex electrochemical impedance measurements were carried out in the applied frequency range of 0.1 Hz - 1 MHz and in the temperature range of 303- 373 K. The PEO/SNCs composite complexed with 15 wt.% salt showed room temperature ionic conductivity of 7.8x10-8 S/cm promising for soft electronics, solid state ionics and sensing applications.
引用
收藏
页码:689 / 697
页数:9
相关论文
共 50 条
  • [21] In situ amination of anion conducting solid polymer electrolyte membranes
    Shah, Parin N.
    Park, Habin
    Tee, Hui Min
    Dietrich, Chandler
    Kohl, Paul A.
    MATERIALS ADVANCES, 2023, 4 (10): : 2322 - 2331
  • [23] Improved ion dissociation and amorphous region of PEO based solid polymer electrolyte by incorporating tetracyanoethylene
    Polu, Anji Reddy
    Singh, Pramod K.
    MATERIALS TODAY-PROCEEDINGS, 2022, 49 : 3093 - 3097
  • [24] Transparent flexible lithium ion conducting solid polymer electrolyte
    Puthirath, Anand B.
    Patra, Sudeshna
    Pal, Shubhadeep
    Manoj, M.
    Balan, Aravind Puthirath
    Jayalekshmi, S.
    Narayanan, Tharangattu N.
    JOURNAL OF MATERIALS CHEMISTRY A, 2017, 5 (22) : 11152 - 11162
  • [25] PEO based solid polymer electrolyte plasticized by dibutyl phthalate
    Indian Inst of Technology, Mumbai, India
    Solid State Ionics, (179-186):
  • [26] Ion-Conducting Dynamic Solid Polymer Electrolyte Adhesives
    Kato, Ryo
    Mirmira, Priyadarshini
    Sookezian, Arvin
    Grocke, Garrett L.
    Patel, Shrayesh N.
    Rowan, Stuart J.
    ACS MACRO LETTERS, 2020, 9 (04) : 500 - 506
  • [27] PEO based solid polymer electrolyte plasticized by dibutyl phthalate
    Sukeshini, AM
    Kulkarni, AR
    Sharma, A
    SOLID STATE IONICS, 1998, 113 : 179 - 186
  • [28] Studies on solid polymer electrolyte based on PEO/PVC blends
    Rajendran, S.
    Babu, Ravishanker
    Kanimozhi, K.
    INDIAN JOURNAL OF PHYSICS, 2007, 81 (5-6) : 539 - 545
  • [29] Poly (ethylene oxide) (PEO)-based, sodium ion-conducting‚ solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells
    B. Jinisha
    K. M. Anilkumar
    M. Manoj
    A. Abhilash
    V. S. Pradeep
    S. Jayalekshmi
    Ionics, 2018, 24 : 1675 - 1683
  • [30] Poly (ethylene oxide) (PEO)-based, sodium ion-conducting, solid polymer electrolyte films, dispersed with Al2O3 filler, for applications in sodium ion cells
    Jinisha, B.
    Anilkumar, K. M.
    Manoj, M.
    Abhilash, A.
    Pradeep, V. S.
    Jayalekshmi, S.
    IONICS, 2018, 24 (06) : 1675 - 1683