Adherence Forecasting for Guided Internet-Delivered Cognitive Behavioral Therapy: A Minimally Data-Sensitive Approach

被引:4
作者
Cote-Allard, Ulysse [1 ]
Pham, Minh H. [1 ]
Schultz, Alexandra K. [2 ]
Nordgreen, Tine [3 ,4 ]
Torresen, Jim [1 ]
机构
[1] Univ Oslo, Dept Informat, N-0373 Oslo, Norway
[2] Univ Oslo, Fac Law, N-0162 Oslo, Norway
[3] Univ Bergen, Dept Clin Psychol, N-5009 Bergen, Norway
[4] Haukeland Hosp, Div Psychiat, N-5036 Bergen, Norway
关键词
Interaction data; machine learning; mental healthcare; e-health; adherence forecasting; sensitive data; SYMPTOM-CHANGE; GLOBAL BURDEN; DEPRESSION; METAANALYSIS; EFFICACY; PSYCHOTHERAPY; DISORDERS; PHARMACOTHERAPY; INTERVENTIONS; TRAJECTORIES;
D O I
10.1109/JBHI.2022.3204737
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Internet-delivered psychological treatments (IDPT) are seen as an effective and scalable pathway to improving the accessibility of mental healthcare. Within this context, treatment adherence is an especially pertinent challenge to address due to the reduced interaction between healthcare professionals and patients. In parallel, the increase in regulations surrounding the use of personal data, such as the General Data Protection Regulation (GDPR), makes data minimization a core consideration for real-world implementation of IDPTs. Consequently, this work proposes a Self-Attention-based deep learning approach to perform automatic adherence forecasting, while only relying on minimally sensitive login/logout-timestamp data. This approach was tested on a dataset containing 342 patients undergoing Guided Internet-delivered Cognitive Behavioral Therapy (G-ICBT) treatment. Of these 342 patients, 101 (similar to 30%) were considered non-adherent (dropout) based on the adherence definition used in this work (i.e. at least eight connections to the platform lasting more than a minute over 56 days). The proposed model achieved over 70% average balanced accuracy, after only 20 out of the 56 days (similar to 1/3) of the treatment had elapsed. This study demonstrates that automatic adherence forecasting for G-ICBT, is achievable using only minimally sensitive data, thus facilitating the implementation of such tools within real-world IDPT platforms
引用
收藏
页码:2771 / 2781
页数:11
相关论文
共 48 条
  • [21] Combining pharmacotherapy and psychotherapy or monotherapy for major depression? A meta-analysis on the long-term effects
    Karyotaki, E.
    Smit, Y.
    Henningsen, K. Holdt
    Huibers, M. J. H.
    Robays, J.
    de Beurs, D.
    Cuijpers, P.
    [J]. JOURNAL OF AFFECTIVE DISORDERS, 2016, 194 : 144 - 152
  • [22] Predictors of treatment dropout in self-guided web-based interventions for depression: an 'individual patient data' meta-analysis
    Karyotaki, E.
    Kleiboer, A.
    Smit, F.
    Turner, D. T.
    Pastor, A. M.
    Andersson, G.
    Berger, T.
    Botella, C.
    Breton, J. M.
    Carlbring, P.
    Christensen, H.
    de Graaf, E.
    Griffiths, K.
    Donker, T.
    Farrer, L.
    Huibers, M. J. H.
    Lenndin, J.
    Mackinnon, A.
    Meyer, B.
    Moritz, S.
    Riper, H.
    Spek, V.
    Vernmark, K.
    Cuijpers, P.
    [J]. PSYCHOLOGICAL MEDICINE, 2015, 45 (13) : 2717 - 2726
  • [23] Efficacy of Self-guided Internet-Based Cognitive Behavioral Therapy in the Treatment of Depressive Symptoms A Meta-analysis of Individual Participant Data
    Karyotaki, Eirini
    Riper, Heleen
    Twisk, Jos
    Hoogendoorn, Adriaan
    Kleiboer, Annet
    Mira, Adriana
    Mackinnon, Andrew
    Meyer, Bjorn
    Botella, Cristina
    Littlewood, Elizabeth
    Andersson, Gerhard
    Christensen, Helen
    Klein, Jan P.
    Schroeder, Johanna
    Breton-Lopez, Juana
    Scheider, Justine
    Griffiths, Kathy
    Farrer, Louise
    Huibers, Marcus J. H.
    Phillips, Rachel
    Gilbody, Simon
    Moritz, Steffen
    Berger, Thomas
    Pop, Victor
    Spek, Viola
    Cuijpers, Pim
    [J]. JAMA PSYCHIATRY, 2017, 74 (04) : 351 - 359
  • [24] THE LONG-TERM EFFICACY OF ACUTE-PHASE PSYCHOTHERAPY FOR DEPRESSION: A META-ANALYSIS OF RANDOMIZED TRIALS
    Karyotaki, Eirini
    Smit, Yolba
    de Beurs, Derek P.
    Henningsen, Kirsten Holdt
    Robays, Jo
    Huibers, Marcus J. H.
    Weitz, Erica
    Cuijpers, Pim
    [J]. DEPRESSION AND ANXIETY, 2016, 33 (05) : 370 - 383
  • [25] Loshchilov I., 2019, 7 INT C LEARN REPRES
  • [26] Maciejewsky M., 2021, POLICY DEPT CITIZEN, P12
  • [27] ON A TEST OF WHETHER ONE OF 2 RANDOM VARIABLES IS STOCHASTICALLY LARGER THAN THE OTHER
    MANN, HB
    WHITNEY, DR
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1947, 18 (01): : 50 - 60
  • [28] What is a support vector machine?
    Noble, William S.
    [J]. NATURE BIOTECHNOLOGY, 2006, 24 (12) : 1565 - 1567
  • [29] Challenges and possible solutions in cross-disciplinary and cross-sectorial research teams within the domain of e-mental health
    Nordgreen, Tine
    Rabbi, Fazle
    Torresen, Jim
    Skar, Yngvar Sigmund
    Guribye, Frode
    Inal, Yavuz
    Flobakk, Eivind
    Wake, Jo Dugstad
    Mukhiya, Suresh Kumar
    Aminifar, Amin
    Myklebost, Sunniva
    Lundervold, Astri J.
    Kenter, Robin
    Hammar, Asa
    Nordby, Emilie
    Kahlon, Smiti
    Tveit Sekse, Ragnhild J.
    Griffin, Kristine Fonnes
    Jakobsen, Petter
    Pham, Minh H.
    Cote-Allard, Ulysse
    Noori, Farzan Majeed
    Lamo, Yngve
    [J]. JOURNAL OF ENABLING TECHNOLOGIES, 2021, 15 (04) : 241 - 251
  • [30] Effectiveness of guided Internet-delivered treatment for major depression in routine mental healthcare - An open study
    Nordgreen, Tine
    Blom, Kerstin
    Andersson, Gerhard
    Carlbring, Per
    Havik, Odd E.
    [J]. INTERNET INTERVENTIONS-THE APPLICATION OF INFORMATION TECHNOLOGY IN MENTAL AND BEHAVIOURAL HEALTH, 2019, 18