Nonuniqueness of minimizers for semilinear optimal control problems

被引:0
|
作者
Pighin, Dario [1 ,2 ]
机构
[1] Univ Autonoma Madrid, Dept Matemat, Madrid 28049, Spain
[2] Univ Deusto, Fdn Deusto, Chair Computat Math, Bilbao 48007, Basque Country, Spain
基金
欧洲研究理事会;
关键词
Semilinear elliptic equations; nonuniqueness; global minimizer; lack of convexity; optimal control; ELLIPTIC-EQUATIONS; APPROXIMATE CONTROLLABILITY; BOUNDARY CONTROL;
D O I
10.4171/JEMS/1232
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A counterexample to uniqueness of global minimizers of semilinear optimal control problems is given. The lack of uniqueness occurs for a special choice of the state-target in the cost functional. Our arguments also show that, for some state-targets, there exist local minimizers which are not global. When this occurs, gradient-type algorithms may be trapped by local minim-izers, thus missing global ones. Furthermore, the issue of convexity of a quadratic functional in optimal control is analyzed in an abstract setting.As a corollary of nonuniqueness of minimizers, a nonuniqueness result for a coupled elliptic system is deduced.Numerical simulations have been performed illustrating the theoretical results.We also discuss the possible impact of the multiplicity of minimizers on the turnpike property in long time horizons.
引用
收藏
页码:2127 / 2162
页数:36
相关论文
共 50 条
  • [1] Approximation of generalized minimizers and regularization of optimal control problems
    Guerra, Manuel
    Sarychev, Andrey
    LAGRANGIAN AND HAMILTONIAN METHODS FOR NONLINEAR CONTROL 2006, 2007, 366 : 269 - +
  • [2] Global minima for semilinear optimal control problems
    Ahmad Ahmad Ali
    Klaus Deckelnick
    Michael Hinze
    Computational Optimization and Applications, 2016, 65 : 261 - 288
  • [3] Optimal control problems for semilinear evolution equations
    Jeong, Jin-Mun
    Kim, Jin-Ran
    Roh, Hyun-Hee
    JOURNAL OF THE KOREAN MATHEMATICAL SOCIETY, 2008, 45 (03) : 757 - 769
  • [4] Strict sense minimizers which are relaxed extended minimizers in general optimal control problems
    Fusco, Giovanni
    Motta, Monica
    2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 6000 - 6005
  • [5] Global minima for semilinear optimal control problems
    Ali, Ahmad Ahmad
    Deckelnick, Klaus
    Hinze, Michael
    COMPUTATIONAL OPTIMIZATION AND APPLICATIONS, 2016, 65 (01) : 261 - 288
  • [6] ON THE NONUNIQUENESS AND INSTABILITY OF SOLUTIONS OF TRACKING-TYPE OPTIMAL CONTROL PROBLEMS
    Christof, Constantin
    Hafemeyer, Dominik
    MATHEMATICAL CONTROL AND RELATED FIELDS, 2021, : 421 - 431
  • [7] A posteriori error estimates for semilinear optimal control problems
    Allendes, Alejandro
    Fuica, Francisco
    Otarola, Enrique
    Quero, Daniel
    ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS, 2021, 55 (05) : 2293 - 2322
  • [8] Discretization methods for semilinear parabolic optimal control problems
    Chryssoverghi, Ion
    INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING, 2006, 3 (04) : 437 - 458
  • [9] Lipschitzian Regularity of Minimizers for Optimal Control Problems with Control-Affine Dynamics
    A. V. Sarychev
    D. F. M. Torres
    Applied Mathematics and Optimization, 2000, 41 : 237 - 254
  • [10] Lipschitzian regularity of minimizers for optimal control problems with control-affine dynamics
    Sarychev, AV
    Torres, DFM
    APPLIED MATHEMATICS AND OPTIMIZATION, 2000, 41 (02): : 237 - 254