A deep learning model based on the attention mechanism for automatic segmentation of abdominal muscle and fat for body composition assessment

被引:9
作者
Shen, Hao [1 ,2 ]
He, Pin [3 ,4 ]
Ren, Ya [3 ,4 ]
Huang, Zhengyong [1 ,2 ]
Li, Shuluan [5 ]
Wang, Guoshuai [1 ,2 ]
Cong, Minghua [6 ]
Luo, Dehong [3 ,4 ]
Shao, Dan [7 ]
Lee, Elaine Yuen-Phin [8 ]
Cui, Ruixue [9 ]
Huo, Li [9 ]
Qin, Jing [10 ]
Liu, Jun
Hu, Zhanli [1 ,4 ]
Liu, Zhou [3 ,11 ]
Zhang, Na [1 ]
机构
[1] Chinese Acad Sci, Shenzhen Inst Adv Technol, Lauterbur Res Ctr Biomed Imaging, Shenzhen, Peoples R China
[2] Univ Chinese Acad Sci, Beijing, Peoples R China
[3] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Radiol, Shenzhen, Peoples R China
[4] Chinese Acad Med Sci & Peking Union Med Coll, Shenzhen Hosp, Shenzhen, Peoples R China
[5] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp & Shenzhen Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc, Shenzhen, Peoples R China
[6] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp, Dept Med Oncol, Natl Canc Ctr, Beijing, Peoples R China
[7] Guangdong Acad Med Sci, Guangdong Prov Peoples Hosp, Dept Nucl Med, Guangzhou, Peoples R China
[8] Univ Hong Kong, Li Ka Shing Fac Med, Clin Sch Med, Dept Diagnost Radiol, Hong Kong, Peoples R China
[9] Peking Union Med Coll Hosp, Chinese Acad Med Sci & Peking Union Med Coll, Nucl Med Dept,State Key Lab Complex Severe & Rare, Ctr Rare Dis Res, Beijing, Peoples R China
[10] Cent South Univ, Xiangya Hosp 2, Dept Radiol, Changsha, Peoples R China
[11] Chinese Acad Med Sci & Peking Union Med Coll, Canc Hosp & Shenzhen Hosp, Natl Canc Ctr, Natl Clin Res Ctr Canc,Dept Radiol, Shenzhen 518116, Peoples R China
基金
中国国家自然科学基金;
关键词
CT scan; deep learning; sarcopenia; muscle segmentation; fat segmentation; EARLY LUNG-CANCER; COMPUTED-TOMOGRAPHY; ARTIFICIAL-INTELLIGENCE; SPIRAL CT; IMAGES; PREVALENCE; SARCOPENIA;
D O I
10.21037/qims-22-330
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background: Quantitative muscle and fat data obtained through body composition analysis are expected to be a new stable biomarker for the early and accurate prediction of treatment-related toxicity, treatment response, and prognosis in patients with lung cancer. The use of these biomarkers can enable the adjustment of individualized treatment regimens in a timely manner, which is critical to further improving patient prognosis and quality of life. We aimed to develop a deep learning model based on attention for fully automated segmentation of the abdomen from computed tomography (CT) to quantify body composition. Methods: A fully automatic segmentation deep learning model was designed based on the attention mechanism and using U-Net as the framework. Subcutaneous fat, skeletal muscle, and visceral fat were manually segmented by two experts to serve as ground truth labels. The performance of the model was Results: The mean DSC for subcutaneous fat and skeletal muscle were high for both the enhanced CT test Nevertheless, the model did not perform well in the segmentation performance of visceral fat, especially for
引用
收藏
页码:1384 / 1398
页数:15
相关论文
共 46 条
  • [1] Deep Learning Automated Segmentation for Muscle and Adipose Tissue from Abdominal Computed Tomography in Polytrauma Patients
    Ackermans, Leanne L. G. C.
    Volmer, Leroy
    Wee, Leonard
    Brecheisen, Ralph
    Sanchez-Gonzalez, Patricia
    Seiffert, Alexander P.
    Gomez, Enrique J.
    Dekker, Andre
    Ten Bosch, Jan A.
    Olde Damink, Steven M. W.
    Blokhuis, Taco J.
    [J]. SENSORS, 2021, 21 (06) : 1 - 13
  • [2] A Deep Learning Model to Automate Skeletal Muscle Area Measurement on Computed Tomography Images
    Amarasinghe, Kaushalya C.
    Lopes, Jamie
    Beraldo, Julian
    Kiss, Nicole
    Bucknell, Nicholas
    Everitt, Sarah
    Jackson, Price
    Litchfield, Cassandra
    Denehy, Linda
    Blyth, Benjamin J.
    Siva, Shankar
    MacManus, Michael
    Ball, David
    Li, Jason
    Hardcastle, Nicholas
    [J]. FRONTIERS IN ONCOLOGY, 2021, 11
  • [3] Amjad A, 2020, INT J RADIAT ONCOL, V108, pS100
  • [4] Artificial intelligence, radiomics and other horizons in body composition assessment
    Attanasio, Simona
    Forte, Sara Maria
    Restante, Giuliana
    Gabelloni, Michela
    Guglielmi, Giuseppe
    Neri, Emanuele
    [J]. QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2020, 10 (08) : 1650 - 1660
  • [5] The Lovasz-Softmax loss: A tractable surrogate for the optimization of the intersection-over-union measure in neural networks
    Berman, Maxim
    Triki, Amal Rannen
    Blaschko, Matthew B.
    [J]. 2018 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2018, : 4413 - 4421
  • [6] A Machine Learning Algorithm to Estimate Sarcopenia on Abdominal CT
    Burns, Joseph E.
    Yao, Jianhua
    Chalhoub, Didier
    Chen, Joseph J.
    Summers, Ronald M.
    [J]. ACADEMIC RADIOLOGY, 2020, 27 (03) : 311 - 320
  • [7] Causality matters in medical imaging
    Castro, Daniel C.
    Walker, Ian
    Glocker, Ben
    [J]. NATURE COMMUNICATIONS, 2020, 11 (01)
  • [8] Deep Learning: A Primer for Radiologists
    Chartrand, Gabriel
    Cheng, Phillip M.
    Vorontsov, Eugene
    Drozdzal, Michal
    Turcotte, Simon
    Pal, Christopher J.
    Kadoury, Samuel
    Tang, An
    [J]. RADIOGRAPHICS, 2017, 37 (07) : 2113 - 2131
  • [9] Dabiri S, 2020, COMPUT MED IMAG GRAP, V85, DOI [10.1016/j.compmedimag.2020.101776, 10.1016.j.compmedimag.2020.101776]
  • [10] Muscle segmentation in axial computed tomography (CT) images at the lumbar (L3) and thoracic (T4) levels for body composition analysis
    Dabiri, Setareh
    Popuri, Karteek
    Feliciano, Elizabeth M. Cespedes
    Caan, Bette J.
    Baracos, Vickie E.
    Beg, Mirza Faisal
    [J]. COMPUTERIZED MEDICAL IMAGING AND GRAPHICS, 2019, 75 : 47 - 55