Oriented Infrared Vehicle Detection in Aerial Images via Mining Frequency and Semantic Information

被引:7
作者
Zhang, Nan [1 ]
Liu, Youmeng [1 ]
Liu, Hao [1 ]
Tian, Tian [1 ]
Tian, Jinwen [1 ]
机构
[1] Huazhong Univ Sci & Technol, Sch Artificial Intelligence & Automation, Natl Key Lab Multispectral Informat Intelligent Pr, Wuhan 430074, Peoples R China
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2023年 / 61卷
基金
中国国家自然科学基金;
关键词
Feature extraction; Semantics; Object detection; Low-pass filters; Vehicle detection; Kernel; Cutoff frequency; Frequency features; infrared aerial image; oriented bounding box; semantic features; vehicle detection; FRAMEWORK; NETWORK;
D O I
10.1109/TGRS.2023.3273818
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Infrared vehicle detection based on aerial images has significant applications in military and civilian fields for the perception ability under low-light and foggy conditions. However, it remains challenging due to the following characteristics. First, infrared textures and edges are blurred, implying a plenty of low-frequency signals and a shortage of detailed descriptions. Second, objects in infrared images present different patterns depending on their thermal radiations, which hamper the feature extraction of convolution kernels. Third, infrared images lack color information, which means that fewer features for classification and regression can be used. Inspired by cognitive neuroscience that humans perceive the entirety from low-frequency information and discern details from high-frequency information, we devise a new framework for oriented infrared vehicle detection called infrared information mining detector (I2MDet) to tackle the above challenges. It consists of two significant designs: the kaleidoscope module and the semantic feature supplement module (SFSM). In the kaleidoscope module, we explore the effect of kernel sizes and dilation rates on frequency information mining with kaleidoscope-like equivalent kernels. Features in this module are extracted by adaptive involution operators instead of convolution kernels to deal with multiple patterns. The SFSM provides the network with features beneficial for classification and regression. On the one hand, the network is guided to learn more meaningful features under semantic supervision. On the other hand, features output by the SFSM supplement the detection head with semantic information. Experimental results on the public dataset DroneVehicle demonstrate that our proposed approach achieves outstanding performance on oriented infrared vehicle detection.
引用
收藏
页数:15
相关论文
共 50 条
  • [21] An Anchor-Free Lightweight Deep Convolutional Network for Vehicle Detection in Aerial Images
    Shen, Jiaquan
    Zhou, Wangcheng
    Liu, Ningzhong
    Sun, Han
    Li, Deguang
    Zhang, Yongxin
    IEEE TRANSACTIONS ON INTELLIGENT TRANSPORTATION SYSTEMS, 2022, 23 (12) : 24330 - 24342
  • [22] Vehicle detection on unmanned aerial vehicle images based on saliency region detection
    Li W.
    Qu F.
    Liu P.
    International Journal of Performability Engineering, 2019, 15 (02): : 688 - 699
  • [23] Vehicle Detection in High-Resolution Aerial Images via Sparse Representation and Superpixels
    Chen, Ziyi
    Wang, Cheng
    Wen, Chenglu
    Teng, Xiuhua
    Chen, Yiping
    Guan, Haiyan
    Luo, Huan
    Cao, Liujuan
    Li, Jonathan
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 103 - 116
  • [24] Cross-Grid Label Assignment for Arbitrary-Oriented Object Detection in Aerial Images
    Rao, Xiaohan
    Zhou, Liming
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2024, 21 : 1 - 5
  • [25] Lightweight Deep Network With Context Information and Attention Mechanism for Vehicle Detection in Aerial Image
    Shen, Jiaquan
    Liu, Ningzhong
    Sun, Han
    Li, Deguang
    Zhang, Yongxin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [26] Fully Convolutional Lightweight Pyramid Network for Vehicle Detection in Aerial Images
    Du, Qingsong
    Celik, Turgay
    Wang, Qianli
    Li, Heng-Chao
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [27] Vehicle Detection in Aerial Images Using a Fast Oriented Region Search and the Vector of Locally Aggregated Descriptors
    Liu, Chongyang
    Ding, Yalin
    Zhu, Ming
    Xiu, Jihong
    Li, Mengyang
    Li, Qihui
    SENSORS, 2019, 19 (15)
  • [28] Vehicle Detection in Aerial Images Based on Region Convolutional Neural Networks and Hard Negative Example Mining
    Tang, Tianyu
    Zhou, Shilin
    Deng, Zhipeng
    Zou, Huanxin
    Lei, Lin
    SENSORS, 2017, 17 (02)
  • [29] Vehicle detection from aerial images with an new algorithm
    Zheng, Zezhong
    Wang, Xiaoting
    Zheng, Wenfeng
    Zhou, Guoqing
    2011 INTERNATIONAL CONFERENCE ON COMPUTERS, COMMUNICATIONS, CONTROL AND AUTOMATION (CCCA 2011), VOL I, 2010, : 594 - 597
  • [30] VEHICLE DETECTION FROM PARKING LOT AERIAL IMAGES
    Wei, Huan
    Zhou, Guoqing
    Zheng, Zezhong
    Li, Xiaowen
    Liu, Yalan
    Zhang, Ying
    Li, Shang
    Yue, Tao
    2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, : 4002 - 4005