Conservative second-order accurate finite-difference scheme for the coupled Maxwell-Dirac equations

被引:1
作者
van den Broeck, Jul [1 ]
Vanderstraeten, Emile [1 ]
Decleer, Pieter [1 ]
Vande Ginste, Dries [1 ]
机构
[1] IDLab, Dept Informat Technol, Quest, Technol pk Zwijnaarde 126, B-9000 Ghent, Belgium
关键词
Maxwell -Dirac equations; Finite-difference time-domain; Multiphysics; Numerical solver; Conservative methods; Numerical stability; ZrTe; 5; waveguide; NUMERICAL-METHOD;
D O I
10.1016/j.apm.2023.03.016
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The recent development of nanoelectronic devices that incorporate Dirac materials has highly increased the need for adequate simulation and modelling tools. This paper introduces an accurate, multiphysics finite-difference time-domain method to solve the pertinent Maxwell-Dirac equations. The stability criterion for the Dirac equation with electromagnetic fields is derived, which reduces to the Courant-Friedrichs-Lewy condition in the absence of electromagnetic fields. Validation examples show the second-order accuracy of the novel fully coupled Maxwell-Dirac scheme and illustrate that total norm and energy are caonserved within a relative error of order 10 -4 . The method is applied to a ZrTe 5 waveguide and it is found that even at low field strengths, the charge carriers can be accelerated to 80% of the Fermi velocity. Furthermore, the flexibility of the advocated method allows for the seamless integration into existing computational electromagnetics frameworks and the possible extension to higher-order schemes.(c) 2023 Elsevier Inc. All rights reserved.
引用
收藏
页码:25 / 39
页数:15
相关论文
共 41 条
  • [1] High-fidelity numerical solution of the time-dependent Dirac equation
    Almquist, Martin
    Mattsson, Ken
    Edvinsson, Tomas
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2014, 262 : 86 - 103
  • [2] Weyl and Dirac semimetals in three-dimensional solids
    Armitage, N. P.
    Mele, E. J.
    Vishwanath, Ashvin
    [J]. REVIEWS OF MODERN PHYSICS, 2018, 90 (01)
  • [3] Atkinson K. E., 2008, INTRO NUMERICAL ANAL
  • [4] Numerical Methods and Comparison for the Dirac Equation in the Nonrelativistic Limit Regime
    Bao, Weizhu
    Cai, Yongyong
    Jia, Xiaowei
    Tang, Qinglin
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2017, 71 (03) : 1094 - 1134
  • [5] An efficient and stable numerical method for the Maxwell-Dirac system
    Bao, WZ
    Li, XG
    [J]. JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 199 (02) : 663 - 687
  • [6] Controllable p-n junctions in three-dimensional Dirac semimetal Cd3As2 nanowires
    Bayogan, Janice Ruth
    Park, Kidong
    Siu, Zhuo Bin
    An, Sung Jin
    Tang, Chiu-Chun
    Zhang, Xiao-Xiao
    Song, Man Suk
    Park, Jeunghee
    Jalil, Mansoor B. A.
    Nagaosa, Naoto
    Hirakawa, Kazuhiko
    Schoenenberger, Christian
    Seo, Jungpil
    Jung, Minkyung
    [J]. NANOTECHNOLOGY, 2020, 31 (20)
  • [7] Numerical approach to solve the time-dependent Dirac equation
    Braun, JW
    Su, Q
    Grobe, R
    [J]. PHYSICAL REVIEW A, 1999, 59 (01) : 604 - 612
  • [8] Field-Effect Chiral Anomaly Devices with Dirac Semimetal
    Chen, Jiewei
    Zhang, Ting
    Wang, Jingli
    Zhang, Ning
    Ji, Wei
    Zhou, Shuyun
    Chai, Yang
    [J]. ADVANCED FUNCTIONAL MATERIALS, 2021, 31 (40)
  • [9] Optical spectroscopy study of the three-dimensional Dirac semimetal ZrTe5
    Chen, R. Y.
    Zhang, S. J.
    Schneeloch, J. A.
    Zhang, C.
    Li, Q.
    Gu, G. D.
    Wang, N. L.
    [J]. PHYSICAL REVIEW B, 2015, 92 (07)
  • [10] ELECTROMAGNETIC THEORY ON A LATTICE
    CHEW, WC
    [J]. JOURNAL OF APPLIED PHYSICS, 1994, 75 (10) : 4843 - 4850